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Abstract

This paper is devoted to establish nontrivial effective lower bounds for the least
common multiple of consecutive terms of a sequence (un)n∈N whose general term has
the form un = r(qn − 1)/(q − 1) + u0, where r, q and u0 are non-negative integers
satisfying some specific conditions. This can be considered as a q-analog of the lower
bounds already obtained by the author (in 2005) and by Hong and Feng (in 2006) for
arithmetic progressions.

1 Introduction and the main results

Throughout this paper, we let N∗ denote the set N \ {0} of positive integers. For t ∈ R,
we let ⌊t⌋ denote the integer part of t. We say that an integer a is a multiple of a non-zero
rational number r if the quotient a/r is an integer. The letter q always denotes a positive
integer; furthermore, it is assumed, if necessary, that q ≥ 2. (This assumption is needed
in Subsection 2.2.) Let us recall the standard notation of q-calculus (see, e.g., [10]). For
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n, k ∈ N, with n ≥ k, we define

[n]q :=
qn − 1

q − 1
for q ̸= 1 and [n]1 := n,

[n]q! := [n]q[n− 1]q · · · [1]q (with the convention [0]q! = 1),[
n
k

]
q

:=
[n]q!

[k]q![n− k]q!
=

[n]q[n− 1]q · · · [n− k + 1]q
[k]q!

.

The numbers [nk]q are called the q-binomial coefficients (or the gaussian binomial coefficients)
and it is well-known that they are all positive integers (see, e.g., [10]). From this last fact,
we derive the important property stating that

For all a, b ∈ N, the positive integer [a]q![b]q! divides the positive integer [a+ b]q!. (1)

Indeed, for a, b ∈ N, we have
[a+b]q !

[a]q ![b]q !
= [a+ba ]q ∈ N∗.

The study of the least common multiple of consecutive positive integers began with
Chebychev’s work [4] in his attempts to prove the prime number theorem. The latter de-

fined ψ(n) := log lcm(1, 2, . . . , n) (∀n ≥ 2) and showed that ψ(n)
n

is bounded between two
positive constants, but he failed to prove that ψ(n) ∼+∞ n, which is equivalent to the prime
number theorem. Quite recently, Hanson [7] and Nair [12], respectively, obtained the bounds
lcm(1, 2, . . . , n) ≤ 3n (∀n ∈ N∗) and lcm(1, 2, . . . , n) ≥ 2n (∀n ≥ 7) in simple and elegant
ways. Later, the author [5, 6] obtained nontrivial effective lower bounds for the least common
multiple of consecutive terms in an arithmetic progression. In particular, he proved that for
any u0, r, n ∈ N∗, with gcd(u0, r) = 1, we have lcm(u0, u0 + r, . . . , u0 + nr) ≥ u0(r + 1)n−1.
By developing the author’s method, Hong and Feng [8] managed to improve this lower bound
to the optimal one:

lcm(u0, u0 + r, . . . , u0 + nr) ≥ u0(r + 1)n (∀n ∈ N), (2)

which was already conjectured by the author [5, 6]. It is interesting to note that the method
used to obtain (2) is based on the following fundamental theorem:

Theorem 1 ([6, Theorem 2]). Let I be a finite non-empty set of indices and (ui)i∈I be a
sequence of non-zero integers. Then the integer

lcm {ui, i ∈ I} · lcm


∏
i∈I
i ̸=j

|ui − uj|, j ∈ I


is a multiple of the integer

∏
i∈I

ui.
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Furthermore, several authors obtained improvements of (2) for n sufficiently large in
terms of u0 and r (see, e.g., [9, 11]). Concerning the asymptotic estimates and the effective
upper bounds for the least common multiple of an arithmetic progression, we can cite the
work of Bateman et al. [1] and the very recent work of Bousla [2].

In this paper, we apply and adapt the author’s method [5, 6] (slightly developed by Hong
and Feng [8]) to establish nontrivial effective lower bounds for the least common multiple of
consecutive terms in a sequence that we call a q-arithmetic progression; that is, a sequence
(un)n with general term having the form un = r[n]q + u0 (∀n ∈ N), where r ∈ N∗, u0 ∈ N
and r, u0, q satisfy some technical conditions. Our main results are the following:

Theorem 2 (The crucial result). Let q and r be two positive integers and u0 be a non-
negative integer. Let (un)n∈N be the sequence of natural numbers whose general term un is
given by un = r[n]q + u0. Suppose that gcd(u0, r) = gcd(u1, q) = 1. Then, for all positive
integers n and k such that n ≥ k, the positive integer lcm (uk, uk+1, . . . , un) is a multiple of
the rational number ukuk+1···un

[n−k]q !
.

Theorem 3. In the situation of Theorem 2, set

A := max

(
0 ,

u0(q − 1) + 1− r

2r

)
.

Then, for all positive integers n, we have

lcm (u1, u2, . . . , un) ≥ u1

(
r + 1√
r(A+ 1)

)n−1

q
(n−1)(n−4)

4 .

Theorem 4. In the situation of Theorem 2, set

B := max

(
r ,

u0(q − 1) + 1− r

2

)
.

Then, for all positive integers n, we have

lcm (u1, u2, . . . , un) ≥ u1

(
r + 1

2
√
B

)n−1

q
(n−1)(n−4)

4 .

Note that Theorem 2 is a q-analog of a result due to the author (see [5, Théorème 2.3] or
[6, Theorem 3]). Furthermore, Theorems 3 and 4 are derived from Theorem 2 by optimizing
a certain specific expression, and they can be considered as q-analogs of the results by the
author [5, 6] and those by Hong and Feng [8].

From Theorems 3 and 4, we immediately derive the following two corollaries:

Corollary 5. Let q, a and b be integers such that q ≥ 2, a ≥ 1 and b ≥ −a and let (vn)n∈N
be the sequence of natural numbers whose general term vn is given by

vn = aqn + b (∀n ∈ N).
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Suppose that gcd(aq, b) = gcd(a+ b, q − 1) = 1 and set

A′ := max

(
0 ,

b

2a
+

1

2a(q − 1)

)
.

Then, for all positive integers n, we have

lcm (v1, v2, . . . , vn) ≥ (aq + b)

(
a(q − 1) + 1√
a(q − 1)(A′ + 1)

)n−1

q
(n−1)(n−4)

4 .

Corollary 6. In the situation of Corollary 5, set

B′ := max

(
a(q − 1) ,

b(q − 1) + 1

2

)
.

Then, for all positive integers n, we have

lcm (v1, v2, . . . , vn) ≥ (aq + b)

(
a(q − 1) + 1

2
√
B′

)n−1

q
(n−1)(n−4)

4 .

2 The proofs

Throughout the following, we fix q, r ∈ N∗ and u0 ∈ N such that gcd(u0, r) = gcd(u1, q) = 1
and we let (un)n∈N denote the sequence of natural numbers defined by its general term
un := r[n]q + u0 (∀n ∈ N).

2.1 Proof of Theorem 2

To prove Theorem 2, we need the following three lemmas:

Lemma 7. For all i, j ∈ N, we have

|ui − uj| = rqmin(i,j)[|i− j|]q.

Proof. Let i, j ∈ N. Because the two sides of the equality of the lemma are both symmetric
(in i and j), we may suppose without loss of generality that i ≥ j. Doing so we have

|ui − uj| = ui − uj =
(
r[i]q + u0

)
−
(
r[j]q + u0

)
= r

(
[i]q − [j]q

)
= r

(
qi − 1

q − 1
− qj − 1

q − 1

)
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= r

(
qi − qj

q − 1

)
= rqj

(
qi−j − 1

q − 1

)
= rqj[i− j]q

= rqmin(i,j)[|i− j|]q,

as required. The lemma is proved.

Lemma 8. For all n ∈ N, we have

gcd(un, r) = 1.

If in addition n ≥ 1, then we have

gcd(un, q) = 1.

Proof. Let n ∈ N and let us show that gcd(un, r) = 1. This is equivalent to show that
d = 1 is the only positive common divisor of un and r. So let d be a positive common
divisor of un and r and let us show that d = 1. The hypotheses d|un and d|r together imply
that d|(un − r[n]q) = u0. Hence d is a positive common divisor of u0 and r. But since
gcd(u0, r) = 1, it follows that d = 1, as required. Consequently, we have gcd(un, r) = 1.

Next, let n ∈ N∗ and let us show that gcd(un, q) = 1. Equivalently, we have to show
that d = 1 is the only positive common divisor of un and q. So let d be a positive common
divisor of un and q and let us show that d = 1. The hypotheses d|un and d|q together imply
that d|((rqn + u0q)− (q − 1)un) = r + u0 = u1. So d is a positive common divisor of u1 and
q. But since gcd(u1, q) = 1, we conclude that d = 1, as required. Consequently, we have
gcd(un, q) = 1. This completes the proof of the lemma.

Lemma 9. For all positive integers n and k such that n ≥ k and any j ∈ {k, k + 1, . . . , n},
we have ∑

k≤i≤n
i ̸=j

min(i, j) ≤ (n− k)(n+ k − 1)

2
.

Proof. Let n and k be positive integers such that n ≥ k and let j ∈ {k, k + 1, . . . , n}. We
have ∑

k≤i≤n
i ̸=j

min(i, j) =
∑
k≤i<j

min(i, j) +
∑
j<i≤n

min(i, j)

=
∑
k≤i<j

i+
∑
j<i≤n

j
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=
(j − k)(j + k − 1)

2
+ (n− j)j

=
2nj − j2 − k2 − j + k

2

=
(n− k)(n+ k − 1) + (n− j)− (n− j)2

2

≤ (n− k)(n+ k − 1)

2

(since n− j ≤ (n− j)2, because n− j ∈ N). The lemma is proved.

Now we are ready to prove the crucial Theorem 2:

Proof of Theorem 2. Let n and k be positive integers such that n ≥ k. By applying the
fundamental Theorem 1 to the set of indices I = {k, k+1, . . . , n} and the sequence (ui)i∈I =
{uk, uk+1, . . . , un}, we find that the positive integer

lcm (uk, uk+1, . . . , un) · lcm


∏
k≤i≤n
i ̸=j

|ui − uj| ; j = k, . . . , n


is a multiple of the positive integer ukuk+1 · · ·un. Now let us find a simple multiple for the

positive integer lcm
{∏

k≤i≤n,i ̸=j |ui − uj|; j = k, . . . , n
}
. According to Lemma 7, we have for

any j ∈ {k, k + 1, . . . , n}, that∏
k≤i≤n
i ̸=j

|ui − uj| =
∏
k≤i≤n
i ̸=j

(
rqmin(i,j)[|i− j|]q

)

= rn−kq

∑
k≤i≤n
i ̸=j

min(i,j) ∏
k≤i≤n
i ̸=j

[|i− j|]q

= rn−kq

∑
k≤i≤n
i ̸=j

min(i,j)

[1]q[2]q · · · [j − k]q × [1]q[2]q · · · [n− j]q

= rn−kq

∑
k≤i≤n
i ̸=j

min(i,j)

[j − k]q![n− j]q!,

which divides (according to Lemma 9 and Property (1)) the positive integer

rn−kq
(n−k)(n+k−1)

2 [n− k]q!.

Consequently, the positive integer lcm{
∏

k≤i≤n,i ̸=j |ui − uj|; j = k, . . . , n} divides the pos-

itive integer rn−kq
(n−k)(n+k−1)

2 [n− k]q!. It follows (according to what obtained at the be-
ginning of this proof) that the positive integer ukuk+1 · · ·un divides the positive integer
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rn−kq
(n−k)(n+k−1)

2 [n− k]q! lcm (uk, uk+1, . . . , un). Next, since (according to Lemma 8) the in-
tegers ui (i ≥ 1) are all coprime with r and q then the product ukuk+1 · · ·un is coprime with

rn−kq
(n−k)(n+k−1)

2 , which shows (according to the Gauss lemma) that ukuk+1 · · ·un divides
[n− k]q! lcm (uk, uk+1, . . . , un). Equivalently, the positive integer lcm (uk, uk+1, . . . , un) is a

multiple of the rational number ukuk+1···un
[n−k]q !

. This completes the proof.

2.2 Proofs of Theorems 3 and 4 and their corollaries

To deduce Theorems 3 and 4 from Theorem 2, we need some additional preparations. Since,
for q = 1, Theorems 3 and 4 are immediate consequences of (2), we may suppose for the
sequel that q ≥ 2. Next, we naturally extend the definition of un to negative indices n and
for all n, k ∈ Z such that n ≥ k we define

Cn,k :=
ukuk+1 · · ·un
[n− k]q!

.

Furthermore, for a given positive integer n, the problem of determining the positive integer
k ≤ n which maximizes Cn,k leads us to introduce the function f : R → R, defined as follows:

f(x) := qx−1
(
rqx−1 + u0(q − 1) + 1− r

)
(∀x ∈ R).

It is immediate that f increases, tends to 0 as x tends to (−∞) and satisfies, for all n ∈ N∗,
the property

∀k ∈ Z : k > n⇒ f(k) > qn.

For a given positive integer n, these properties ensure the existence of a largest kn ∈ Z
satisfying f(kn) ≤ qn, and show, in addition, that kn ≤ n. From the increase of f and the
definition of kn (n ∈ N∗), we derive that

∀k ∈ Z : k ≤ kn ⇐⇒ f(k) ≤ qn. (3)

Now since for any n ∈ N∗ and any k ∈ Z, we have

f(k) ≤ qn ⇐⇒ qk−1
(
rqk−1 + u0(q − 1) + 1− r

)
≤ qn

⇐⇒ rqk−1 + u0(q − 1) + 1− r ≤ qn−k+1

⇐⇒ qn−k+1 − 1

q − 1
≥ r

qk−1 − 1

q − 1
+ u0

⇐⇒ [n− k + 1]q ≥ uk−1,

then Property (3) is equivalent to

∀k ∈ Z : k ≤ kn ⇐⇒ [n− k + 1]q ≥ uk−1. (4)

For a given positive integer n, we set

ℓn := max(1, kn).
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Since kn ≤ n, we have that ℓn ∈ {1, 2, . . . , n}.
Next, it is immediate that f satisfies the following inequality:

f(x− 1) ≤ 1

q
f(x) (∀x ∈ R). (5)

For a fixed n ∈ N∗, the following lemmas aim to maximize the quantity Cn,k (1 ≤ k ≤
n) appearing in Theorem 2. Precisely, we shall determine two simple upper bounds for
max1≤k≤nCn,k from which we derive our Theorems 3 and 4.

Lemma 10. Let n be a fixed positive integer. The sequence (Cn,k)k∈Z,k≤n is non-decreasing
until k = kn, and then it decreases. So it reaches its maximal value at k = kn.

Proof. For any k ∈ Z, with k ≤ n, we have

Cn,k ≥ Cn,k−1 ⇐⇒ Cn,k
Cn,k−1

≥ 1

⇐⇒ ukuk+1 · · ·un
[n− k]q!

/uk−1uk · · ·un
[n− k + 1]q!

≥ 1

⇐⇒
[n− k + 1]q

uk−1

≥ 1

⇐⇒ [n− k + 1]q ≥ uk−1

⇐⇒ k ≤ kn (according to (4)),

which concludes the proof.

From the last lemma, we obviously derive the following:

Lemma 11. Let n be a fixed positive integer. Then the sequence (Cn,k)1≤k≤n reaches its
maximal value at k = ℓn. □

If n ∈ N∗ is fixed, we have from Lemma 11 above that max1≤k≤nCn,k = Cn,ℓn ; however,
the exact value of Cn,ℓn (in terms of n, q, r, u0) is complicated. The lemmas below provide
studies of the sequences (kn)n, (ℓn)n and (Cn,ℓn)n in order to find a good lower bound for
Cn,ℓn that has a simple expression in terms of n, q, r, u0.

Lemma 12. For all positive integers n, we have

kn ≤ kn+1 ≤ kn + 1.

In other words, we have
kn+1 ∈ {kn, kn + 1} .
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Proof. Let n be a fixed positive integer. By definition of the integer kn, we have

f(kn) ≤ qn ≤ qn+1,

which implies (by definition of the integer kn+1) that

kn+1 ≥ kn.

On the other hand, we have (according to (5) and the definition of the integer kn+1)

f(kn+1 − 1) ≤ 1

q
f(kn+1) ≤

1

q
qn+1 = qn,

which implies (by definition of the integer kn) that

kn ≥ kn+1 − 1;

that is
kn+1 ≤ kn + 1.

This completes the proof of the lemma.

Lemma 13. For all positive integers n, we have

ℓn+1 ∈ {ℓn, ℓn + 1} .

In addition, in the case when ℓn+1 = ℓn + 1, we have ℓn = kn and ℓn+1 = kn+1 = kn + 1.

Proof. Let n be a fixed positive integer. By Lemma 12, we have that

kn ≤ kn+1 ≤ kn + 1.

Hence

max(1, kn) ≤ max(1, kn+1) ≤ max(1, kn + 1) = max(0, kn) + 1 ≤ max(1, kn) + 1;

therefore
ℓn ≤ ℓn+1 ≤ ℓn + 1.

This confirms the first part of the lemma.
Now let us show the second part of the lemma. So suppose that ℓn+1 = ℓn + 1 and show

that ℓn = kn and ℓn+1 = kn+1 = kn + 1. Since ℓn = max(1, kn) ≥ 1 and ℓn+1 = ℓn + 1
then ℓn+1 ≥ 2. This implies that ℓn+1 ̸= 1; thus ℓn+1 = kn+1 (since ℓn+1 = max(1, kn+1) ∈
{1, kn+1}). Using this and Lemma 12 above, we derive that ℓn = ℓn+1 − 1 = kn+1 − 1 ≤
(kn+1)−1 = kn; that is ℓn ≤ kn. But since ℓn = max(1, kn) ≥ kn, we conclude that ℓn = kn.
This completes the proof of the second part of the lemma and finishes the proof.
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Lemma 14. For all positive integers n, we have

Cn+1,ℓn+1 ≥ (r + 1)qℓn−1Cn,ℓn .

Proof. Let n be a fixed positive integer. By Lemma 13, we have that ℓn+1 ∈ {ℓn, ℓn+1}. So
we have to distinguish two cases:

Case 1: (if ℓn+1 = ℓn)

In this case, we have

Cn+1,ℓn+1 = Cn+1,ℓn =
uℓnuℓn+1 · · ·unun+1

[n+ 1− ℓn]q!
=
uℓnuℓn+1 · · ·un

[n− ℓn]q!
· un+1

[n+ 1− ℓn]q

= Cn,ℓn · un+1

[n+ 1− ℓn]q
. (6)

Next, we have

un+1 − (r + 1)qℓn−1[n+ 1− ℓn]q = r[n+ 1]q + u0 − (r + 1)qℓn−1

(
qn+1−ℓn − 1

q − 1

)
= r

(
qn+1 − 1

q − 1

)
+ u0 − (r + 1)

(
qn − qℓn−1

q − 1

)
=
r(qn+1 − 1) + u0(q − 1)− (r + 1)(qn − qℓn−1)

q − 1

=
rqn+1 − (r + 1)qn + (r + 1)qℓn−1 − r + u0(q − 1)

q − 1

=

(
r(q − 1)− 1

)
qn + [(r + 1)qℓn−1 − r] + u0(q − 1)

q − 1

≥ 0

(since q ≥ 2, r ≥ 1, u0 ≥ 0 and ℓn ≥ 1). Thus

un+1

[n+ 1− ℓn]q
≥ (r + 1)qℓn−1.

By substituting this into (6), we get

Cn+1,ℓn+1 ≥ (r + 1)qℓn−1Cn,ℓn ,

as required.

Case 2: (if ℓn+1 = ℓn + 1)
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In this case, we have (according to Lemma 13): ℓn = kn and ℓn+1 = kn+1 = kn + 1. Thus,
we have

Cn+1,ℓn+1 = Cn+1,kn+1 =
ukn+1ukn+2 · · ·unun+1

[n− kn]q!
= Cn,kn · un+1

ukn
= Cn,ℓn · un+1

ukn
. (7)

Next, according to the inequality of the right-hand side of (4) (applied for (n + 1) instead
of n and kn+1 instead of k), we have (since kn+1 ≤ kn+1)

ukn = ukn+1−1 ≤ [(n+ 1)− kn+1 + 1]q = [n− kn + 1]q.

Hence

un+1 − (r + 1)qℓn−1ukn = un+1 − (r + 1)qkn−1ukn

≥ un+1 − (r + 1)qkn−1[n− kn + 1]q

= r

(
qn+1 − 1

q − 1

)
+ u0 − (r + 1)qkn−1

(
qn−kn+1 − 1

q − 1

)
=
r(qn+1 − 1) + u0(q − 1)− (r + 1)(qn − qkn−1)

q − 1

=
(r(q − 1)− 1)qn + u0(q − 1) + (r + 1)qkn−1 − r

q − 1

≥ 0

(since q ≥ 2, r ≥ 1, u0 ≥ 0 and kn = ℓn ≥ 1). Thus

un+1

ukn
≥ (r + 1)qℓn−1.

By substituting this into (7), we get

Cn+1,ℓn+1 ≥ (r + 1)qℓn−1Cn,ℓn ,

as required. The proof of the lemma is complete.

By induction, we derive the following from Lemma 14 above:

Corollary 15. For all positive integers n, we have

Cn,ℓn ≥ u1(r + 1)n−1q
∑n−1

i=1 (ℓi−1).

Proof. Let n be a positive integer. From Lemma 14, we have

Cn,ℓn = C1,ℓ1

n−1∏
i=1

Ci+1,ℓi+1

Ci,ℓi
≥ C1,ℓ1

n−1∏
i=1

{
(r + 1)qℓi−1

}
= C1,ℓ1(r + 1)n−1q

∑n−1
i=1 (ℓi−1).

Next, since k1 ≤ 1, we have ℓ1 = max(1, k1) = 1; hence C1,ℓ1 = C1,1 = u1
[0]q !

= u1. Conse-

quently, we have

Cn,ℓn ≥ u1(r + 1)n−1q
∑n−1

i=1 (ℓi−1),

as required. The corollary is proved.
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From Theorem 2 and Corollary 15 above, we immediately deduce the following result:

Corollary 16. For all positive integers n, we have

lcm (u1, u2, . . . , un) ≥ u1(r + 1)n−1q
∑n−1

i=1 (ℓi−1).

Proof. Let n be a fixed positive integer. Since the positive integer lcm (u1, u2, . . . , un) is
obviously a multiple of the positive integer lcm (uℓn , uℓn+1, . . . , un), which is a multiple of the
rational number

uℓnuℓn+1···un
[n−ℓn]q !

= Cn,ℓn (according to Theorem 2), then we have

lcm (u1, u2, . . . , un) ≥ Cn,ℓn .

The result of the corollary then follows from Corollary 15. The proof is complete.

Remark 17. If we allow to take q = 1 in Corollary 16, then we exactly obtain the result of
Hong and Feng [8] (recalled in (2)).

Now in order to derive an explicit lower bound for lcm (u1, u2, . . . , un) (n ≥ 1) from
Corollary 16 above, it remains to bound the ℓi from below in terms of n, q, r and u0. Here we
just give two ways to bound the ℓi from below, but there are certainly other ways (perhaps
more intelligent) to do this. We have the following lemmas:

Lemma 18. Let

A := max

(
0 ,

u0(q − 1) + 1− r

2r

)
.

Then, for all positive integers n, we have

ℓn >
1

2

(
n− log r + 2 log(A+ 1)

log q

)
.

Proof. Let n be a fixed positive integer. Since the inequality of the lemma is obvious for
n ≤ log r+2 log(A+1)

log q
, we may assume for the sequel that n > log r+2 log(A+1)

log q
. Now for any x ≥ 1,

we have

f(x) := qx−1
(
rqx−1 + u0(q − 1) + 1− r

)
= r

((
qx−1 +

u0(q − 1) + 1− r

2r

)2

−
(
u0(q − 1) + 1− r

2r

)2
)

≤ r

(
qx−1 +

u0(q − 1) + 1− r

2r

)2

≤ r
(
qx−1 + A

)2
≤ r

(
qx−1 + Aqx−1

)2
= r(A+ 1)2q2(x−1).

12



By applying this for

x0 :=
1

2

(
n− log r + 2 log(A+ 1)

log q

)
+ 1

(which is > 1 according to our assumption n > log r+2 log(A+1)
log q

), we get

f(x0) ≤ r(A+ 1)2qn−
log r+2 log(A+1)

log q = qn.

Then, since f is increasing and ⌊x0⌋ ≤ x0, we derive that

f(⌊x0⌋) ≤ f(x0) ≤ qn,

which implies (according to the definition of kn) that

kn ≥ ⌊x0⌋ > x0 − 1.

Hence
ℓn := max(1, kn) ≥ kn > x0 − 1,

that is

ℓn >
1

2

(
n− log r + 2 log(A+ 1)

log q

)
,

as required. The lemma is proved.

Lemma 19. Let

B := max

(
r ,

u0(q − 1) + 1− r

2

)
.

Then, for all positive integers n, we have

ℓn >
1

2

(
n− log(4B)

log q

)
.

Proof. Let n be a fixed positive integer. Since the inequality of the lemma is obvious for
n ≤ log(4B)

log q
, we may assume for the sequel that n > log(4B)

log q
. Now for any x ≥ 1, we have

f(x) := qx−1
(
rqx−1 + u0(q − 1) + 1− r

)
≤ qx−1

(
Bqx−1 + 2B

)
< B

(
qx−1 + 1

)2
≤ B

(
2qx−1

)2
= 4Bq2(x−1).

By applying this for

x1 :=
1

2

(
n− log(4B)

log q

)
+ 1

13



(which is > 1 according to our assumption n > log(4B)
log q

), we get

f(x1) ≤ 4Bqn−
log(4B)
log q = qn.

Then, since f is increasing and ⌊x1⌋ ≤ x1, we derive that

f(⌊x1⌋) ≤ f(x1) ≤ qn,

which implies (according to the definition of kn) that

kn ≥ ⌊x1⌋ > x1 − 1 =
1

2

(
n− log(4B)

log q

)
.

Hence

ℓn := max(1, kn) ≥ kn >
1

2

(
n− log(4B)

log q

)
,

as required. The lemma is proved.

We are now ready to prove Theorems 3 and 4 announced in Section 1.

Proof of Theorem 3. By using successively Corollary 16 and Lemma 18, we have for all
n ∈ N∗ that

lcm (u1, u2, . . . , un) ≥ u1(r + 1)n−1q
∑n−1

i=1 (ℓi−1)

≥ u1(r + 1)n−1q
(n−1)(n−4)

4
− 1

2
log r+2 log(A+1)

log q
(n−1)

= u1

(
r + 1√
r(A+ 1)

)n−1

q
(n−1)(n−4)

4 ,

as required.

Proof of Theorem 4. By using successively Corollary 16 and Lemma 19, we have for all
n ∈ N∗

lcm (u1, u2, . . . , un) ≥ u1(r + 1)n−1q
∑n−1

i=1 (ℓi−1)

≥ u1(r + 1)n−1q
(n−1)(n−4)

4
− 1

2
log(4B)
log q

(n−1)

= u1

(
r + 1

2
√
B

)n−1

q
(n−1)(n−4)

4 ,

as required.

Proof of Corollary 5. It suffices to remark that vn = a(q − 1)[n]q + a+ b (∀n ∈ N) and then
to apply Theorem 3 for the sequence (vn)n∈N. We just specify that the imposed conditions
gcd(aq, b) = gcd(a + b, q − 1) = 1 guarantee the conditions gcd(v0, r) = gcd(v1, q) = 1
required in Theorem 3 (with r := a(q − 1)).

Proof of Corollary 6. We simply apply Theorem 4 for the sequence (vn)n∈N, after noticing
that its general term can be written as: vn = a(q − 1)[n]q + a+ b.

14



3 Numerical examples and remarks

By applying our main results, we get for example the following nontrivial effective estimates:

• lcm (21 − 1, 22 − 1, . . . , 2n − 1) ≥ 2
n(n−1)

4 (∀n ≥ 1)
(Apply Theorem 3 for un = [n]2 = 2n − 1).

• lcm (21 + 1, 22 + 1, . . . , 2n + 1) ≥ 3 · 2
(n−1)(n−4)

4 (∀n ≥ 1)
(Apply one of the two corollaries 5 or 6 for vn = 2n + 1).

• lcm (31 + 1, 32 + 1, . . . , 3n + 1) ≥ 4 · 3
(n−1)(n−4)

4 (∀n ≥ 1)

(Observe that lcm (31 + 1, 32 + 1, . . . , 3n + 1) = 2 lcm
(

31+1
2
, 3

2+1
2
, . . . , 3

n+1
2

)
and apply

one of the two Theorems 3 or 4 for un = [n]3 + 1 = 3n+1
2

).

Remark 20.

(a) Theorems 3 and 4 are incomparable in the sense that there are situations where The-
orem 3 is stronger than Theorem 4, and other situations where we have the converse.
For example, it is easy to verify that if u0(q − 1) + 1 − r ≤ 0, then Theorem 3 is
stronger than Theorem 4, while if u0(q − 1) + 1− 3r > 0, then Theorem 4 is stronger
than Theorem 3.

(b) By refining the arguments of bounding from below the ℓi (that is the arguments of
the proofs of Lemmas 18 and 19), it is perhaps possible to obtain a lower bound for
lcm (u1, u2, . . . , un) (n ≥ 1) of the form

lcm (u1, u2, . . . , un) ≥ c

(
r + 1√
r

)n−1

q
(n−1)(n−4)

4 ,

where c is a positive constant depending only on q, r and u0. It appears that this is
the best that can be expected from this method!

(c) It is remarkable that our lower bounds of lcm (u1, u2, . . . , un), for the considered se-
quences (un)n, are quite close to

√
u1u2 · · ·un. More precisely, we can easily de-

duce from our main results that in the same context, we have lcm (u1, u2, . . . , un) ≥
c3c

n
4

√
u1u2 · · ·un, for some suitable positive constants c3 and c4, depending only on q,

r and u0.

(d) There is something in common between our results and the recent result by Bousla
and Farhi [3] providing effective bounds for lcm(U1, U2, . . . , Un), when (Un)n∈N is a
particular Lucas sequence; precisely, when (Un)n is recursively defined by U0 = 0,
U1 = 1 and Un+2 = PUn+1−QUn (∀n ∈ N) for some P,Q ∈ Z∗, with P 2− 4Q > 0 and

15



gcd(P,Q) = 1. Indeed, if we take P = q + 1 and Q = q (for some integer q ≥ 2), we
obtain that Un = [n]q and the Bousla-Farhi lower bound then gives

lcm
(
[1]q, [2]q, . . . , [n]q

)
≥ q

n2

4
−n

2
−1 (∀n ≥ 1),

which is almost the same as what we obtained in this paper.
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[4] P. L. Chebyshev, Mémoire sur les nombres premiers, J. Math. Pures Appl. 17 (1852),
366–390.

[5] B. Farhi, Minorations non triviales du plus petit commun multiple de certaines suites
finies d’entiers, C. R. Acad. Sci. Paris, Sér. I 341 (2005), 469–474.

[6] B. Farhi, Nontrivial lower bounds for the least common multiple of some finite sequences
of integers, J. Number Theory 125 (2007), 393–411.

[7] D. Hanson, On the product of the primes, Canad. Math. Bull. 15 (1972), 33–37.

[8] S. Hong and W. Feng, Lower bounds for the least common multiple of finite arithmetic
progressions, C. R. Acad. Sci. Paris, Sér. I 343 (2006), 695–698.

[9] S. Hong and S. D. Kominers, Further improvements of lower bounds for the least com-
mon multiples of arithmetic progressions, Proc. Amer. Math. Soc. 138 (2010), 809–813.

[10] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002.

[11] D. Kane and S. D. Kominers, Asymptotic improvements of lower bounds for the least
common multiples of arithmetic progressions, Canad. Math. Bull. 57 (2014), 551–561.

[12] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982),
126–129.

16



2010 Mathematics Subject Classification: Primary 11A05; Secondary 11B25, 11B65, 05A30.
Keywords: least common multiple, q-analog, arithmetic progression.

Received September 21 2020; revised version received February 17 2021. Published in Journal
of Integer Sequences, February 17 2021.

17


