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Abstract

When studying the least common multiple of some finite sequences of
integers, the first author introduced the interesting arithmetic functions
gk (k ∈ N), defined by gk(n) := n(n+1)...(n+k)

lcm(n,n+1,...,n+k) (∀n ∈ N \ {0}). He
proved that gk (k ∈ N) is periodic and k! is a period of gk. He raised
the open problem consisting to determine the smallest positive period Pk

of gk. Very recently, S. Hong and Y. Yang have improved the period k!
of gk to lcm(1, 2, . . . , k). In addition, they have conjectured that Pk is
always a multiple of the positive integer lcm(1,2,...,k,k+1)

k+1 . An immediate
consequence of this conjecture states that if (k + 1) is prime then the
exact period of gk is precisely equal to lcm(1, 2, . . . , k).

In this paper, we first prove the conjecture of S. Hong and Y. Yang and
then we give the exact value of Pk (k ∈ N). We deduce, as a corollary,
that Pk is equal to the part of lcm(1, 2, . . . , k) not divisible by some prime.
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1 Introduction

Throughout this paper, we let N∗ denote the set N\{0} of positive integers.
Many results concerning the least common multiple of sequences of integers

are known. The most famous is nothing else than an equivalent of the prime
number theorem; it sates that log lcm(1, 2, . . . , n) ∼ n as n tends to infinity (see
e.g., [6]). Effective bounds for lcm(1, 2, . . . , n) are also given by several authors
(see e.g., [5] and [10]).
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Recently, the topic has undergone important developments. In [1], Bate-
man, Kalb and Stenger have obtained an equivalent for log lcm(u1, u2, . . . , un)
when (un)n is an arithmetic progression. In [2], Cilleruelo has obtained a simple
equivalent for the least common multiple of a quadratic progression. For the
effective bounds, Farhi [3] [4] got lower bounds for lcm(u0, u1, . . . , un) in both
cases when (un)n is an arithmetic progression or when it is a quadratic progres-
sion. In the case of arithmetic progressions, Hong and Feng [7] and Hong and
Yang [8] obtained some improvements of Farhi’s lower bounds.

Among the arithmetic progressions, the sequences of consecutive integers are
the most well-known with regards the properties of their least common multiple.
In [4], Farhi introduced the arithmetic function gk : N∗ → N∗ (k ∈ N) which is
defined by:

gk(n) :=
n(n + 1) . . . (n + k)

lcm(n, n + 1, . . . , n + k)
(∀n ∈ N∗).

Farhi proved that the sequence (gk)k∈N satisfies the recursive relation:

gk(n) = gcd (k!, (n + k)gk−1(n)) (∀k, n ∈ N∗). (1)

Then, using this relation, he deduced (by induction on k) that gk (k ∈ N) is
periodic and k! is a period of gk. A natural open problem raised in [4] consists
to determine the exact period (i.e., the smallest positive period) of gk.

For the following, let Pk denote the exact period of gk. So, Farhi’s result
amounts that Pk divides k! for all k ∈ N. Very recently, Hong and Yang have
shown that Pk divides lcm(1, 2, . . . , k). This improves Farhi’s result but it doesn’t
solve the raised problem of determining the Pk’s. In their paper [8], Hong and
Yang have also conjectured that Pk is a multiple of lcm(1,2,...,k+1)

k+1
for all non-

negative integer k. According to the property that Pk divides lcm(1, 2, . . . , k)
(∀k ∈ N), this conjecture implies that the equality Pk = lcm(1, 2, . . . , k) holds
at least when (k + 1) is prime.

In this paper, we first prove the conjecture of Hong and Yang and then we
give the exact value of Pk (∀k ∈ N). As a corollary, we show that Pk is equal
to the part of lcm(1, 2, . . . , k) not divisible by some prime and that the equality
Pk = lcm(1, 2, . . . , k) holds for an infinitely many k ∈ N for which (k +1) is not
prime.
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2 Proof of the conjecture of Hong and Yang

We begin by extending the functions gk (k ∈ N) to Z as follows:
• We define g0 : Z→ N∗ by g0(n) = 1, ∀n ∈ Z.
• If, for some k ≥ 1, gk−1 is defined, then we define gk by the relation:

gk(n) = gcd (k!, (n + k)gk−1(n)) (∀n ∈ Z). (1′)

Those extensions are easily seen to be periodic and to have the same period
as their restriction to N∗. The following proposition plays a vital role in what
follows:

Proposition 2.1 For any k ∈ N,we have gk(0) = k!.

Proof. This follows by induction on k with using the relation (1′). ¥
We now arrive at the theorem implying the conjecture of Hong and Yang.

Theorem 2.2 For all k ∈ N, we have:

Pk =
lcm(1, 2, . . . , k + 1)

k + 1
.gcd (Pk + k + 1, lcm(Pk + 1, Pk + 2, . . . , Pk + k)) .

The proof of this theorem needs the following lemma:

Lemma 2.3 For all k ∈ N, we have:

lcm(Pk, Pk + 1, . . . , Pk + k) = lcm(Pk + 1, Pk + 2, . . . , Pk + k).

Proof of the Lemma. Let k ∈ N fixed. The required equality of the lemma is
clearly equivalent to say that Pk divides lcm(Pk + 1, Pk + 2, . . . , Pk + k). This
amounts to showing that for any prime number p:

vp(Pk) ≤ vp (lcm(Pk + 1, . . . , Pk + k)) = max
1≤i≤k

vp(Pk + i). (2)

So it remains to show (2). Let p be a prime number. Because Pk divides
lcm(1, 2, . . . , k) (according to the result of Hong and Yang [8]), we have vp(Pk) ≤
vp(lcm(1, 2, . . . , k)), that is vp(Pk) ≤ max1≤i≤k vp(i). So there exists i0 ∈
{1, 2, . . . , k} such that vp(Pk) ≤ vp(i0). It follows, according to the elementary
properties of the p-adic valuation, that we have:

vp(Pk) = min (vp(Pk), vp(i0)) ≤ vp(Pk + i0) ≤ max
1≤i≤k

vp(Pk + i),

which confirms (2) and completes this proof. ¥
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Proof of Theorem 2.2. Let k ∈ N fixed. The main idea of the proof is to
calculate in two different ways the quotient gk(Pk)

gk(Pk+1)
and then to compare the

obtained results. On one hand, we have from the definition of the function gk:

gk(Pk)

gk(Pk + 1)
=

Pk(Pk + 1) . . . (Pk + k)

lcm(Pk, Pk + 1, . . . , Pk + k)
/

(Pk + 1)(Pk + 2) . . . (Pk + k + 1)

lcm(Pk + 1, Pk + 2, . . . , Pk + k + 1)

= Pk
lcm(Pk + 1, Pk + 2, . . . , Pk + k + 1)

(Pk + k + 1)lcm(Pk, Pk + 1, . . . , Pk + k)
(3)

Next, using Lemma 2.3 and the well-known formula “ab = lcm(a, b)gcd(a, b)
(∀a, b ∈ N∗)”, we have:

(Pk+k+1)lcm(Pk, Pk+1, . . . , Pk+k) = (Pk+k+1)lcm(Pk+1, Pk+2, . . . , Pk+k)

= lcm (Pk + k + 1, lcm(Pk + 1, . . . , Pk + k))

×gcd (Pk + k + 1, lcm(Pk + 1, . . . , Pk + k))

= lcm(Pk+1, Pk+2, . . . , Pk+k+1)gcd (Pk + k + 1, lcm(Pk + 1, . . . , Pk + k)) .

By substituting this into (3), we obtain:

gk(Pk)

gk(Pk + 1)
=

Pk

gcd (Pk + k + 1, lcm(Pk + 1, . . . , Pk + k))
. (4)

On other hand, according to Proposition 2.1 and to the definition of Pk, we have:

gk(Pk)

gk(Pk + 1)
=

k!

gk(1)
=

lcm(1, 2, . . . , k + 1)

k + 1
. (5)

Finally, by comparing (4) and (5), we get:

Pk =
lcm(1, 2, . . . , k + 1)

k + 1
gcd (Pk + k + 1, lcm(Pk + 1, Pk + 2, . . . , Pk + k)) ,

as required. The proof is complete. ¥
From Theorem 2.2, we derive the following interesting corollary, which con-

firms the conjecture of Hong and Yang [8].

Corollary 2.4 For all k ∈ N, the exact period Pk of gk is a multiple of the
positive integer lcm(1,2,...,k,k+1)

k+1
. In addition, for all k ∈ N for which (k + 1) is

prime, we have precisely Pk = lcm(1, 2, . . . , k).

Proof. The first part of the corollary immediately follows from Theorem 2.2.
Furthermore, we remark that if k is a natural number such that (k +1) is prime,
then we have lcm(1,2,...,k+1)

k+1
= lcm(1, 2, . . . , k). So, Pk is both a multiple and a

divisor of lcm(1, 2, . . . , k). Hence Pk = lcm(1, 2, . . . , k). This finishes the proof
of the corollary. ¥
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Now, we exploit the identity of Theorem 2.2 in order to obtain the p-adic
valuation of Pk (k ∈ N) for most prime numbers p.

Theorem 2.5 Let k ≥ 2 be an integer and p ∈ [1, k] be a prime number
satisfying:

vp(k + 1) < max
1≤i≤k

vp(i). (6)

Then, we have:
vp(Pk) = max

1≤i≤k
vp(i).

Proof. The identity of Theorem 2.2 implies the following equality:

vp(Pk) = max
1≤i≤k+1

(vp(i))−vp(k+1)+min

{
vp(Pk + k + 1), max

1≤i≤k
(vp(Pk + i))

}
.

(7)
Now, using the hypothesis (6) of the theorem, we have:

max
1≤i≤k+1

(vp(i)) = max
1≤i≤k

(vp(i)) (8)

and
max

1≤i≤k+1
(vp(i))− vp(k + 1) > 0.

According to (7), this last inequality implies that:

min

{
vp(Pk + k + 1), max

1≤i≤k
vp(Pk + i)

}
< vp(Pk). (9)

Let i0 ∈ {1, 2, . . . , k} such that max1≤i≤k vp(i) = vp(i0). Since Pk divides
lcm(1, 2, . . . , k), we have vp(Pk) ≤ vp(i0), which implies that vp(Pk + i0) ≥
min(vp(Pk), vp(i0)) = vp(Pk). Thus max1≤i≤k vp(Pk + i) ≥ vp(Pk). It follows
from (9) that

min

{
vp(Pk + k + 1), max

1≤i≤k
vp(Pk + i)

}
= vp(Pk + k + 1) < vp(Pk). (10)

So, we have

min (vp(Pk), vp(k + 1)) ≤ vp(Pk + k + 1) < vp(Pk),

which implies that
vp(k + 1) < vp(Pk)

and then, that

vp(Pk + k + 1) = min (vp(Pk), vp(k + 1)) = vp(k + 1).
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According to (10), it follows that

min

{
vp(Pk + k + 1), max

1≤i≤k
vp(Pk + i)

}
= vp(k + 1). (11)

By substituting (8) and (11) into (7), we finally get:

vp(Pk) = max
1≤i≤k

vp(i),

as required. The theorem is proved. ¥
Using Theorem 2.5, we can find infinitely many natural numbers k so that

(k + 1) is not prime and the equality Pk = lcm(1, 2, . . . , k) holds. The following
corollary gives concrete examples for such numbers k.

Corollary 2.6 If k is an integer having the form k = 6r − 1 (r ∈ N, r ≥ 2),
then we have

Pk = lcm(1, 2, . . . , k).

Consequently, there are an infinitely many k ∈ N for which (k + 1) is not prime
and the equality Pk = lcm(1, 2, . . . , k) holds.

Proof. Let r ≥ 2 be an integer and k = 6r−1. We have v2(k+1) = v2(6
r) = r

while max1≤i≤k v2(i) ≥ r+1 (since k ≥ 2r+1). Thus v2(k+1) < max1≤i≤k v2(i).
Similarly, we have v3(k + 1) = v3(6

r) = r while max1≤i≤k v3(i) ≥ r + 1 (since
k ≥ 3r+1). Thus v3(k + 1) < max1≤i≤k v3(i).
Finally, for any prime p ∈ [5, k], we clearly have vp(k + 1) = vp(6

r) = 0 and
max1≤i≤k vp(i) ≥ 1. Hence vp(k + 1) < max1≤i≤k vp(i).
This shows that the hypothesis of Theorem 2.5 is satisfied for any prime num-
ber p. Consequently, we have for any prime p: vp(Pk) = max1≤i≤k vp(i) =
vp(lcm(1, 2, . . . , k)). Hence Pk = lcm(1, 2, . . . , k), as required. ¥

3 Determination of the exact value of Pk

Notice that Theorem 2.5 successfully computes the value of vp (Pk) for almost
all primes p (in fact we will prove in Proposition 3.3 that Theorem 2.5 fails to
provide this value for at most one prime). In order to evaluate Pk, all we have
left to do is compute vp (Pk) for primes p so that vp(k + 1) ≥ max1≤i≤k vp(i).
In particular we will prove:

Lemma 3.1 Let k ∈ N. If vp(k + 1) ≥ max1≤i≤k vp(i), then vp (Pk) = 0.
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From which the following result is immediate:

Theorem 3.2 We have for all k ∈ N:

Pk =
∏

p prime, p≤k

p




0 if vp(k + 1) ≥ max1≤i≤k vp(i)

max1≤i≤k vp(i) else
.

In order to prove this result, we will need to look into some of the more
detailed divisibility properties of gk(n). In this spirit we make the following
definitions:

Let Sn,k = {n, n + 1, n + 2, . . . , n + k} be the set of integers in the range
[n, n + k].

For a prime number p, let gp,k(n) := vp(gk(n)). Let Pp,k be the exact period
of gp,k. Since a positive integer is uniquely determined by the number of times
each prime divides it, Pk = lcmp prime(Pp,k).

Now note that

gp,k(n) =
∑

m∈Sn,k

vp(m)− max
m∈Sn,k

vp(m)

=
∑

e>0,m∈Sn,k

(1 if pe|m)−
∑
e>0

(1 if pe divides some m ∈ Sn,k)

=
∑
e>0

max(0, #{m ∈ Sn,k : pe|m} − 1).

Let ep,k =
⌊
logp(k)

⌋
= max1≤i≤k vp(i) be the largest exponent of a power of p

that is at most k. Clearly there is at most one element of Sn,k divisible by pe if
e > ep,k, therefore terms in the above sum with e > ep,k are all 0. Furthermore,
for each e ≤ ep,k, at least one element of Sp,k is divisible by pe. Hence we have
that

gp,k(n) =

ep,k∑
e=1

(#{m ∈ Sn,k : pe|m} − 1) . (12)

Note that each term on the right hand side of (12) is periodic in n with
period pep,k since the condition pe|(n + m) for fixed m is periodic with period
pe. Therefore Pp,k|pep,k . Note that this implies that the Pp,k for different p are
relatively prime, and hence we have that

Pk =
∏

p prime, p≤k

Pp,k.

We are now prepared to prove our main result
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Proof of Lemma 3.1. Suppose that vp(k + 1) ≥ ep,k. It clearly suffices to
show that vp (Pq,k) = 0 for each prime q. For q 6= p this follows immediately
from the result that Pq,k|qeq,k . Now we consider the case q = p.

For each e ∈ {1, . . . , ep,k}, since pe|k + 1, it is clear that #{m ∈ Sn,k :
pe|m} = k+1

pe , which implies (according to (12)) that gk,n is independent of n.
Consequently, we have Pp,k = 1, and hence vp (Pp,k) = 0, thus completing our
proof. ¥

Note that a slightly more complicated argument allows one to use this tech-
nique to provide an alternate proof of Theorem 2.5.

We can also show that the result in Theorem 3.2 says that Pk is basically
lcm(1, 2, . . . , k).

Proposition 3.3 There is at most one prime p so that vp(k + 1) ≥ ep,k. In
particular, by Theorem 3.2, Pk is either lcm(1, 2, . . . , k), or lcm(1,2,...,k)

p
ep,k for some

prime p.

Proof. Suppose that for two distinct primes, p, q ≤ k that vp(k + 1) ≥ ep,k,
and vq(k + 1) ≥ eq,k. Then

k + 1 ≥ pvp(k+1)qvq(k+1) ≥ pep,kqeq,k > min (pep,k , qeq,k)2 = min
(
p2ep,k , q2eq,k

)
.

But this would imply that either k ≥ p2ep,k or that k ≥ q2eq,k thus violating the
definition of either ep,k or eq,k. ¥
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