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Abstract

We present here a method which allows to derive a nontrivial lower
bounds for the least common multiple of some finite sequences of integers.
We obtain efficient lower bounds (which in a way are optimal) for the
arithmetic progressions and lower bounds less efficient (but nontrivial) for
quadratic sequences whose general term has the form un = an(n + t) + b
with (a, t, b) ∈ Z3, a ≥ 5, t ≥ 0, gcd(a, b) = 1. From this, we deduce for
instance the lower bound: lcm{12 +1, 22 +1, . . . , n2 +1} ≥ 0.32(1.442)n

(for all n ≥ 1).
In the last part of this article, we study the integer lcm(n, n+1, . . . , n+

k) (k ∈ N, n ∈ N \ {0}). We show that it has a divisor dn,k simple in its
dependence on n and k, and a multiple mn,k also simple in its dependence
on n. In addition, we prove that both equalities: lcm(n, n+1, . . . , n+k) =
dn,k and lcm(n, n+1, . . . , n+k) = mn,k hold for an infinitely many pairs
(n, k).

MSC: 11A05.
Keywords: Least common multiple.

1 Introduction and notations

In this article, [x] denotes the integer part of a given real number x. Further,
we say that a real x is a multiple of a non-zero real y if the ratio x/y is an
integer.

The prime numbers theorem (see e.g. [2]) shows that limn→+∞
log lcm{1,...,n}

n
=

1. This is equivalent to the following statement:

∀ε > 0, ∃N = N(ε) /∀n ≥ N : (e− ε)n ≤ lcm{1, . . . , n} ≤ (e + ε)n.
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Concerning the effective estimates of the numbers lcm{1, . . . , n} (n ≥ 1),
one has among others, two main results. The first one is by Hanson [1] which
shows (by using the development of the number 1 in Sylvester series) that
lcm{1, . . . , n} ≤ 3n for all n ≥ 1. The second one is by Nair [3] which proves
(simply by exploiting the integral

∫ 1

0
xn(1−x)ndx) that one has lcm{1, . . . , n} ≥

2n for all n ≥ 7.
In this, we present a method which allows to find a nontrivial lower bounds for

the least common multiple of n consecutive terms (n ∈ N∗) of some sequences
of integers. We obtain efficient lower bounds (which in a way are optimal) for the
arithmetical progressions (see Theorem 5). Besides, we also obtain less efficient
lower bounds (but nontrivial) for the quadratic sequences whose general term
has the form: un = an(n + t) + b with (a, t, b) ∈ Z3, a ≥ 5, t ≥ 0, gcd(a, b) = 1
(see Corollary 10).

Our method is based on the use of some identities related to the sequences
which we study. More precisely, let (αi)i∈I be a given finite sequence of nonzero
integers. We seek an identity of type

∑
i∈I

1
αiβi

= 1
γ
where βi (i ∈ I) and γ are

nonzero integers. If lcm{βi, i ∈ I} is bounded (say by a real constant R > 0),
one concludes that lcm{αi, i ∈ I} ≥ γ

R
(see Lemma 1). It remains to check

whether this later estimate is nontrivial or not.
However, the point is that looking for identities of the above types is not

easy. Theorem 2 stems from concrete and interesting example of such identities.
Though, it is not likewise that we can find other nontrivial applications, than the
ones presented here, for that specific example. In order to have nontrivial lower
bounds of least common multiple for other families of finite sequences, it could
be necessary to seek for new identities related to those sequences.

In the last part of this article, we study the least common multiple of some
number of consecutive integers, larger than a given positive integer. In Theorem
11, we show that the integer lcm{n, n + 1, . . . , n + k} (n ∈ N∗, k ∈ N) has a
divisor dn,k simple in its dependence on n and k and a multiple mn,k simple in its
dependence on n. In addition, we prove that dn,k and mn,k are optimal in that
sense that the equalities lcm{n, . . . , n + k} = dn,k and lcm{n, . . . , n + k} =
mn,k hold for infinitely many pairs (n, k). More precisely, we show that both
equalities are satisfied at least when (n, k) satisfies some congruence modulo k!
(see Theorem 12).
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2 Results

2.1 Basic Results

Lemma 1 Let (αi)i∈I and (βi)i∈I be two finite sequences of non-zero integers
such that: ∑

i∈I

1

αiβi

=
1

γ

for some non-zero integer γ. Then, the integer lcm{αi, i ∈ I}.lcm{βi, i ∈ I} is
a multiple of γ.

Theorem 2 Let (uk)k∈N be a strictly increasing sequence of non-zero integers.
Then, for any positive integer n, the integer:

lcm {u0, . . . , un} .lcm

{ ∏

0≤i≤n,i6=j

(ui − uj) ; j = 0, . . . , n

}

is a multiple of the integer (u0u1 . . . un).

2.2 Results about the arithmetic progressions

Theorem 3 Let (uk)k∈N be a strictly increasing arithmetic progression of non-
zero integers. Then, for any non-negative integer n, the integer lcm{u0, . . . , un}
is a multiple of the rational number:

u0 . . . un

n! (gcd{u0, u1})n .

Theorem 4 (Optimality of Theorem 3) Let (uk)k∈N be a strictly increasing
arithmetic progression of non-zero integers such that u0 and u1 are coprime.
Then, for any positive integer n which satisfies:

u0un ≡ 0 mod(n!),

we have:
lcm{u0, . . . , un} =

u0 . . . un

n!
.

Theorem 5 Let (uk)k∈N be an arithmetic progression of integers whose differ-
ence r and first term u0 are positive and coprime. Then:
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1) For any n ∈ N, we have:

lcm{u0, . . . , un} ≥ u0(r + 1)n−1.

Besides, if n is a multiple of (r + 1), we have:

lcm{u0, . . . , un} ≥ u0(r + 1)n.

2) For any n ∈ N, we have:

lcm{u0, . . . , un} ≥ r(r + 1)n−1.

3) For any n ∈ N, we have:

lcm{u0, . . . , un} ≥ n

n + 1
r
{
(r + 1)n−1 + (r − 1)n−1

}
.

4) For any n ∈ N satisfying n ≥ u0 − 3r+1
2

, we have:

lcm{u0, . . . , un} ≥ 1

π

√
r(r + 1)n−1+

u0
r .

The following Conjecture improves the parts 1) and 2) of Theorem 5. Besides,
the first part of this Theorem ensures its validity in the particular case where the
integer n is a multiple of (r + 1).

Conjecture 6 In the situation of Theorem 5, we have for any n ∈ N:
lcm{u0, . . . , un} ≥ u0(r + 1)n.

The two following Theorems study the optimality of the part 4) of Theorem 5.

Theorem 7 The coefficient −3
2
affected to r which appears in the condition

“n ≥ u0 − 3r+1
2

” of the part 4) of Theorem 5 is optimal.

Theorem 8

1) The optimal absolute constant C for which the assertion:

“For any arithmetic sequence (uk)k as in Theorem 5 and for any
non-negative integer n satisfying n ≥ u0 − 3r+1

2
, we have:

lcm{u0, . . . , un} ≥ C
√

r(r + 1)n−1+
u0
r ”

is true, satisfies:
1

π
≤ C ≤ 3

2
.
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2) More generally, given n0 ∈ N, the optimal constant C(n0) (depending
uniquely on n0) for which the assertion:

“For any arithmetic sequence (uk)k as in Theorem 5 and for any
integer n satisfying n ≥ max{n0, u0 − 3r+1

2
}, we have:

lcm{u0, . . . , un} ≥ C(n0)
√

r(r + 1)n−1+
u0
r ”

is true, satisfies:

1

π
≤ C(n0) < 4(n0 + 4)

√
n0 + 4.

Comments:

i) The lower bound proposed by Conjecture 6 is optimal on the exponent n of
(r+1). Indeed, for any positive integer n and for any arithmetic progression
(uk)k as in Theorem 5, we obviously have:

lcm{u0, . . . , un} ≤ u0u1 . . . un ≤ u0 (max{u0, n})n (r + 1)n.

For any given positive real ε, we can choose two arbitrary positive integers
u0 and n and a positive integer r, which is coprime with u0 and sufficiently
large as to have (r + 1)ε > (max{u0, n})n. The arithmetic progression
(uk)k, with first term u0 and difference r, will then satisfy:

lcm{u0, . . . , un} < u0(r + 1)n+ε.

ii) A similar argument to that of the above part i) shows that the exponent
(n − 1) of (r + 1) which appears in the lower bound of the part 2) of
Theorem 5 is optimal.

iii) For small values of n according to r, the lower bound of the part 3) of
Theorem 5 implies the one of the part 2) of the same Theorem. More
precisely, it can be checked that the necessary and sufficiently condition

for the holding of this improvement is r ≥ n
1

n−1 +1

n
1

n−1−1
, that is n ≤ f(r), where

f is a real function which is equivalent to 1
2
r log r as r tends to infinite.

iv) Under the additional assumptions 7 ≤ r ≤ 2u0 and n ≥ u0 − 3r+1
2

(resp.
r ≤ 2u0 and n ≥ u0 − 3r+1

2
), the lower bound of the part 4) of Theorem

5 implies the one of the part 1) (resp. 2)) of the same Theorem up to the
multiplicative constant 2

π
(resp. 1

π
).

(Notice that the function x 7→ √
x(x + 1)

u0
x is decreasing on the interval

[7, 2u0], then if 7 ≤ r ≤ 2u0, we have
√

r(r + 1)
u0
r > 2u0).
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v) Now, we check that if r ≤ 2
3
u0 and n ≥ u0 − 3r+1

2
, the lower bound of the

part 4) of Theorem 5 implies (up to a multiplicative constant) the one of
Conjecture 6. Indeed, if r ≤ 2

3
u0 and n ≥ u0 − 3r+1

2
, the decrease of the

function x 7→ √
x(x + 1)

u0
x
−1 on the interval [1, +∞[ implies:

√
r(r +

1)
u0
r
−1 ≥

√
2
3
u0

(
2
3
u0 + 1

) 1
2 > 2

3
u0 which gives (by using the lower bound

of the part 4) of Theorem 5):

lcm{u0, . . . , un} ≥ 2

3π
u0(r + 1)n.

• More generally, for any given real ξ ≥ 3
2
, if we suppose r ≤ 1

ξ
u0 and

n ≥ u0− 3r+1
2

then the decrease of the function x 7→ √
x(x+1)

u0
x
−ξ+ 1

2 on

the interval [1, +∞[ implies:
√

r(r + 1)
u0
r
−ξ+ 1

2 ≥
√

u0

ξ

(
u0

ξ
+ 1

) 1
2

> u0

ξ

which gives (by using the lower bound of the part 4) of Theorem 5):

lcm{u0, . . . , un} ≥ 1

πξ
u0(r + 1)n+ξ− 3

2 .

Remark that if ξ > 3
2
, this lower bound is stronger than the one of Con-

jecture 6.

2.3 Results about the quadratic sequences

Theorem 9 Let u = (uk)k∈N be a sequence of integers whose general term has
the form:

uk = ak(k + t) + b (∀k ∈ N),

with (a, t, b) ∈ Z3, a ≥ 1, t ≥ 0 and gcd{a, b} = 1.
Also let m and n (with m < n) be two non-negative integers for which none of
the terms uk (m ≤ k ≤ n) of u is zero. Then the integer lcm{um, . . . , un} is a
multiple of the rational number:

Au(t,m, n) :=

{
2u0...un

(2n)!
if (t,m) = (0, 0)

(2m + t− 1)!um...un

(2n+t)!
otherwise

.

Corollary 10 Let u = (uk)k∈N be a sequence of integers as in the above The-
orem and n be a positive integer. Then, if the (n + 1) first terms u0, . . . , un of
the sequence u are all non-zero, then we have:

lcm{u0, . . . , un} ≥
{

2b
(

a
4

)n if t = 0

b
t2t

(
a
4

)n if t ≥ 1
.
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Remark. It is clear that the lower bound of Corollary 10 is nontrivial only
if a ≥ 5. Such as it is, this corollary cannot thus give a nontrivial lower
bound for the numbers lcm{12 + 1, 22 + 1, . . . , n2 + 1} (n ≥ 1). But we
remark that if r ≥ 3 is an integer, it gives a nontrivial lower bound for the
last common multiple of consecutive terms of the sequence (r2n2 + 1)n≥1 which
is a subsequence of (n2 + 1)n. So we can first obviously bound from below
lcm{12 + 1, 22 + 1, . . . , n2 + 1} by lcm{r2 + 1, r222 + 1, . . . , r2k2 + 1} (with
k := [n

r
]), then use Corollary 10 to bound from below this new quantity. We

obtain in this way:

lcm{12 +1, 22 +1, . . . , n2 +1} ≥ 2

(
r2

4

)k

> 2

(
r2

4

)n
r
−1

=
8

r2

{(r

2

) 2
r

}n

.

This gives (for any choice of r ≥ 3) a nontrivial lower bound for the numbers
lcm{12 + 1, 22 + 1, . . . , n2 + 1} (n ≥ 1). We easily verify that the optimal lower
bound corresponds to r = 5, that is:

lcm{12 + 1, 22 + 1, . . . , n2 + 1} ≥ 0, 32(1, 442)n (∀n ≥ 1).

2.4 Results about the least common multiple of a finite
number of consecutive integers

The following Theorem is an immediate consequence of Theorems 3 and 4.

Theorem 11 For any non-negative integer k and any positive integer n, the
integer lcm{n, n + 1, . . . , n + k} is a multiple of the integer n

(
n+k

k

)
.

Further, if the congruence n(n + k) ≡ 0 mod(k!) is satisfied, then we have
precisely:

lcm{n, n + 1, . . . , n + k} = n

(
n + k

k

)
.

The following result is independent of all the results previously quoted. It gives
a multiple mn,k of the integer lcm{n, n + 1, . . . , n + k} (k ∈ N, n ∈ N∗) which
is optimal and simple in its dependance on n.

Theorem 12 For any non-negative integer k and any positive integer n, the in-
teger lcm{n, n+1, . . . , n+k} divides the integer n

(
n+k

k

)
lcm

{(
k
0

)
,
(

k
1

)
, . . . ,

(
k
k

)}
.

Further, if the congruence n + k + 1 ≡ 0mod(k!) is satisfied, then we have pre-
cisely:

lcm{n, n + 1, . . . , n + k} = n

(
n + k

k

)
lcm

{(
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

)}
.
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3 Proofs

Proof of Lemma 1. In the situation of Lemma 1, we have:

lcm{αi, i ∈ I}.lcm{βi, i ∈ I}
γ

= lcm{αi, i ∈ I}.lcm{βi, i ∈ I}
∑
j∈I

1

αjβj

=
∑
j∈I

lcm{αi, i ∈ I}
αj

.
lcm{βi, i ∈ I}

βj

.

This last sum is clearly an integer because for any j ∈ I, the two numbers
lcm{αi,i∈I}

αj
and lcm{βi,i∈I}

βj
are integers. Lemma 1 follows. ¥

Proof of Theorem 2. Theorem 2 follows by applying Lemma 1 to the identity:

n∑
j=0

1

uj

.
1∏

0≤i≤n,i6=j

(ui − uj)
=

1

u0u1 . . . un

,

which we obtain by taking x = 0 in the decomposition to simple elements of the
rational fraction x 7→ 1

(x+u0)(x+u1)...(x+un)
. ¥

Proof of Theorem 3. By replacing if necessary the sequence (un)n by the
sequence with general term vn := un

gcd{u0,u1} (∀n ∈ N), we may assume that u0

and u1 are coprime. Under this hypothesis, we have to show that the integer
lcm{u0, . . . , un} is a multiple of the rational number u0...un

n!
(for any n ∈ N).

Let n be a fixed non-negative integer. From Theorem 2, the integer lcm{u0, . . . , un}
is a multiple of the rational number

u0 . . . un

lcm

{ ∏

0≤i≤n,i6=j

(ui − uj) ; 0 ≤ j ≤ n

} .

Let r denotes the difference of the arithmetic sequence (uk)k. We have for any
(i, j) ∈ N2: ui − uj = (i− j)r, then for any j ∈ {0, . . . , n}:

∏

0≤i≤n,i6=j

(ui − uj) =
∏

0≤i≤n,i6=j

(i− j)r

= rn {(−j)(1− j)(2− j) . . . (−1)} . {1.2 . . . (n− j)}
= rn(−1)jj!(n− j)!.
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Hence:

lcm

{ ∏

0≤i≤n,i 6=j

(ui − uj) ; 0 ≤ j ≤ n

}
= lcm

{
rn(−1)jj!(n− j)! ; 0 ≤ j ≤ n

}

= rnlcm {j!(n− j)! ; 0 ≤ j ≤ n}
= rnn!

(because each integer j!(n−j)! divides n! and for j = 0 or n, we have j!(n−j)! =
n!).
Thus the integer lcm{u0, . . . , un} is a multiple of the rational number u0...un

rnn!
. But

our hypothesis “u0 coprime with u1” implies that r is coprime with all terms of
the sequence (uk)k, which implies that rn is coprime with the product u0 . . . un.
By the Gauss lemma, we finally conclude that the integer lcm{u0, . . . , un} is a
multiple of the rational number u0...un

n!
as required. ¥

Proof of Theorem 4. We need the following preliminary Lemma:
Lemma. Let n be a positive integer and x and y be two integers satisfying:
x− y ≡ 0 mod(n) and xy ≡ 0 mod(n!). Then x and y are multiples of n.
Proof. We distinguish the following four cases:
• If n = 1: In this case, the result of Lemma is trivial.
• If n is prime: In this case, since x2 = x(x− y) + xy, we have x2 ≡ 0 mod(n),
but since n is supposed prime, we conclude that x ≡ 0 mod(n) and then that
y = x− (x− y) ≡ 0 mod(n).
• If n = 4: In this case, we have x − y ≡ 0 mod(4) and xy ≡ 0 mod(24) and
we have to show that x and y are multiples of 4. Let us argue by contradiction.
Then, since x ≡ y mod(4), we have:
— Either x ≡ y ≡ 1, 3 mod(4) which implies xy ≡ 1 mod(4) and contradicts
the congruence xy ≡ 0 mod(24).
— Or x ≡ y ≡ 2 mod(4) which implies xy ≡ 4 mod(8) and contradicts the
congruence xy ≡ 0 mod(24) again.
Thus the Lemma holds for n = 4.
• If n ≥ 5 and n is not prime: In this case, it is easy to see that the integer
(n − 1)! is a multiple of n, so that the integer n! is a multiple of n2. We thus
have x− y ≡ 0 mod(n) and xy ≡ 0 mod(n2).

Let us argue by contradiction. Suppose that one at least of the two integers
x and y is not a multiple of n. To fix the ideas, suppose for instance that
x 6≡ 0 mod(n). Then, there exists a prime number p dividing n such that
vp(x) < vp(n). But since xy ≡ 0 mod(n2), we have vp(xy) ≥ vp(n

2), that
is vp(x) + vp(y) ≥ 2vp(n). This implies that vp(y) ≥ 2vp(n) − vp(x) > vp(x)
(because vp(x) < vp(n)). Thus, the p-adic valuations of the integers x and y are
distinct. Then we have: vp(x− y) = min(vp(x), vp(y)) = vp(x) < vp(n), which
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contradicts the fact that (x− y) is a multiple of n. The Lemma is proved.
Return to the proof of Theorem 4:

The case n = 1 is trivial. Next, we assume that n ≥ 2. From Theorem 3, the
integer lcm{u0, . . . , un} is a multiple of the rational number u0...un

n!
. To prove

Theorem 4, it remains to prove that u0...un

n!
is also a multiple of lcm{u0, . . . , un},

which means that u0...un

n!
is a multiple of each of integers u0, . . . , un. Since u0un

is assumed a multiple of n!, the number u0...un

n!
is obviously a multiple of each

of integers u1, . . . , un−1. To conclude, it only remains to prove that this same
number u0...un

n!
is a multiple of u0 and un, which is equivalent to prove that

the two integers u1 . . . un and u0 . . . un−1 are multiples of n!. We first prove
that u0 and un are multiples of n. Denoting r the difference of the arithmetic
sequence (uk)k, we have un − u0 = rn ≡ 0 mod(n) and u0un ≡ 0 mod(n!) (by
hypothesis). This implies (from the above Lemma) that u0 and un effectively
are multiples of n.

We now prove that the two integers u1 . . . un and u0 . . . un−1 are multiples
of n!. For any 1 ≤ k ≤ n− 1, we have: uk = u0 + kr ≡ kr mod(u0), then:

u1 . . . un−1 ≡ (1.r)(2.r) . . . ((n− 1).r) mod(u0) ≡ (n− 1)!rn−1 mod(u0).

It follows that:

u1 . . . un−1un ≡ (n− 1)!unrn−1 mod(u0un).

Since un is a multiple of n and (by hypothesis) u0un is a multiple of n!, the last
congruence implies that u1 . . . un−1un is a multiple of n!.

Similarly, for any 1 ≤ k ≤ n−1, we have: un−k = un−kr ≡ −kr mod(un),
then:

un−1 . . . u1 ≡ (−(n−1).r) . . . (−1.r) mod(un) ≡ (−1)n−1(n−1)!rn−1 mod(un).

It follows that:

u0u1 . . . un−1 ≡ (−1)n−1(n− 1)!u0r
n−1 mod(u0un).

Since u0 is a multiple of n and (by hypothesis) u0un is a multiple of n!, the last
congruence implies that u0 . . . un−1 is also a multiple of n!. This completes the
proof of Theorem 4. ¥
Proof of Theorem 5. For any integer k ∈ {0, . . . , n}, the integer lcm{u0, . . . , un}
is obviously a multiple of the integer lcm{uk, . . . , un} and from Theorem 3, this
last integer is a multiple of the rational number uk...un

(n−k)!
. It follows that for any

k ∈ {0, . . . , n}, we have:

lcm{u0, . . . , un} ≥ uk . . . un

(n− k)!
. (1)
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The idea consists in choosing k as a function of n, r and u0 in order to optimize
the lower bound (1), that is to make the quantity uk...un

(n−k)!
maximal.

Let (vk)0≤k≤n denotes the finite sequence of general term: vk := uk...un

(n−k)!
. We

have the following intermediate Lemma:
Lemma. The sequence (vk)0≤k≤n reaches its maximum value at

k0 := max

{
0,

[
n− u0

r + 1

]
+ 1

}
.

Proof. For any k ∈ {0, . . . , n − 1}, we have: vk+1

vk
= uk+1...un

(n−k−1)!
/uk...un

(n−k)!
= n−k

uk
=

n−k
u0+kr

, hence:

vk+1 ≥ vk ⇐⇒ n− k

u0 + kr
≥ 1 ⇐⇒ k ≤ n− u0

r + 1
⇐⇒ k ≤

[
n− u0

r + 1

]
.

This permits us to determine the variations of the finite sequence (vk)0≤k≤n

according to the position of n compared to u0. If n < u0, the sequence (vk)0≤k≤n

is decreasing and it thus reaches its maximum value at k = 0. In the other case
i.e n ≥ u0, the sequence (vk)0≤k≤n is increasing until the integer

[
n−u0

r+1

]
+1 then

it decreases, so it reaches its maximum value at k =
[

n−u0

r+1

]
+ 1. The Lemma

follows.
The following intermediary lemma gives an identity which permits to bound

from bellow vk by simple expressions (as function as u0, r and n) for the particular
values of k which are rather close to the integer k0 of the above Lemma.
Lemma. For any k ∈ {0, . . . , n}, we have:

vk =
rn−k+1

∫ 1

0
xk+

u0
r
−1(1− x)n−kdx

. (2)

Proof. For any 0 ≤ k ≤ n, we have:

vk :=
uk . . . un

(n− k)!
=

uk (uk + r) . . . (uk + (n− k)r)

(n− k)!

= rn−k+1
uk

r

(
uk

r
+ 1

)
. . .

(
uk

r
+ n− k

)

(n− k)!

= rn−k+1 Γ
(

uk

r
+ n− k + 1

)

Γ
(

uk

r

)
.Γ (n− k + 1)

=
rn−k+1

β
(

uk

r
, n− k + 1

) ,
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where Γ and β denote the Euler’s functions. The identity (2) of Lemma follows
from the well known integral formula of the β-function. The Lemma is proved.

Because of some technical difficulties concerning the lower bound of the right-
hand side of (2) for k = k0, we are led to bound from below this side for other
values of k which are close to k0. So, we obtain the lower bounds of the parts
1) and 4) of Theorem 5 by bounding from below vk for k =

[
n−1
r+1

+ 1
]
and

for the nearest integer k to the real n+r−u0

r+1
respectively. Further, we obtain the

remaining parts 2) and 3) of Theorem 5 by another method which doesn’t use
the identity (2). We first prove the parts 1) and 4) of Theorem 5.
Proof of the part 1) of Theorem 5:

Let k1 :=
[

n−1
r+1

+ 1
]
. Using the identity (2), we are going to get a lower

bound for vk1 which depends on u0, r and n. The integer k1 satisfies n−1
r+1

<

k1 ≤ n−1
r+1

+ 1 = n+r
r+1

. We thus have:

rn−k1+1 ≥ r
(n−1)r

r+1
+1 (3)

and for any real x ∈ [0, 1]:

xk1+
u0
r
−1(1− x)n−k1 ≤ x

n−1
r+1

+
u0
r
−1(1− x)

(n−1)r
r+1 ,

which gives:
∫ 1

0

xk1+
u0
r
−1(1− x)n−k1dx ≤

∫ 1

0

{x(1− x)r}n−1
r+1 x

u0
r
−1dx. (4)

By studying the function x 7→ x(1−x)r, we may show that for any real x ∈ [0, 1],
we have: x(1− x)r ≤ rr

(r+1)r+1 . Substituting this into the right-hand side of (4),
we deduce that:

∫ 1

0

xk1+
u0
r
−1(1− x)n−k1dx ≤ r

(n−1)r
r+1

(r + 1)n−1
.
r

u0

(5)

By combining the two relations (3) and (5), we finally obtain:

rn−k1+1

∫ 1

0
xk1+

u0
r
−1(1− x)n−k1dx

≥ u0(r + 1)n−1.

Then the first lower bound of the part 1) of Theorem 5 follows from the relations
(2) and (1).

If n is a multiple of (r+1), the second lower bound of the part 1) of Theorem
5 follows by taking in the above proof instead of k1 the integer k = n

r+1
.
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Proof of the part 4) of Theorem 5:
The particular case n = 0 of the part 4) of Theorem 5 follows from the fact

that the function x 7→ √
x(x + 1)

u0
x
−1 is decreasing on the interval [1, +∞[.

Next, we suppose that n ≥ 1. The hypothesis n ≥ u0− 3r+1
2

means that the real
n+r−u0

r+1
is greater than or equal to −1

2
. Since this same real n+r−u0

r+1
is less than

or equal to n + 1
2
(because n ≥ 1), then there exists an integer k2 ∈ {0, . . . , n}

satisfying:

−1

2
≤ k2 − n + r − u0

r + 1
≤ 1

2
.

It follows that:
rn−k2+1 ≥ r

r(n−1)+u0
r+1

+ 1
2 (6)

and that for any real x ∈]0, 1[:

xk2+
u0
r
−1(1− x)n−k2 ≤ x

r(n−1)+u0
r(r+1)

− 1
2 (1− x)

r(n−1)+u0
r+1

− 1
2

= {x(1− x)r}
r(n−1)+u0

r(r+1)
1√

x(1− x)

≤
(

rr

(r + 1)(r+1)

) r(n−1)+u0
r(r+1) 1√

x(1− x)

(because x(1− x)r ≤ rr

(r+1)r+1 for any x ∈ [0, 1]).
Consequently:

∫ 1

0

xk2+
u0
r
−1(1− x)n−k2dx ≤

(
rr

(r + 1)(r+1)

) r(n−1)+u0
r(r+1)

∫ 1

0

dx√
x(1− x)

.

Since
∫ 1

0
dx√

x(1−x)
= π, we deduce that:

∫ 1

0

xk2+
u0
r
−1(1− x)n−k2dx ≤ π

r
r(n−1)+u0

r+1

(r + 1)n−1+
u0
r

. (7)

By combining the two relations (6) and (7), we finally obtain:

rn−k2+1

∫ 1

0
xk2+

u0
r
−1(1− x)n−k2

≥ 1

π

√
r(r + 1)n−1+

u0
r

and we conclude the lower bound of the part 4) of Theorem 5 by using the iden-
tity (2) and the lower bound (1).

13



We obtain the two remaining parts 2) and 3) of Theorem 5 by using the same
idea which consists to bound from below vk = uk...un

(n−k)!
for some particular values

of k ∈ {0, . . . , n}. The only difference with the last parts 1) and 4) proved above
is that here such particular values are not explicit, we just show their existence
by using the following Lemma:
Lemma. Let x be a real and n be a positive integer. Then:

1) there exists an integer k (1 ≤ k ≤ n) such that:

k

(
n

k

)
xn−k+1 ≥ x(x + 1)n−1.

2) There exists an odd integer ` (1 ≤ ` ≤ n) such that:

`

(
n

`

)
xn−`+1 ≥ n

n + 1
x

{
(x + 1)n−1 + (x− 1)n−1

}
.

Proof. The first part of Lemma follows from the identity:

n∑

k=1

k

(
n

k

)
xn−k+1 = nx(x + 1)n−1 (8)

which can be proved by deriving with respect to u the binomial formula∑n
k=0

(
n
k

)
ukxn−k = (u + x)n and then by taking u = 1 in the obtained formula.

The second part of Lemma follows from the identity:

∑

1≤k≤n

k odd

k

(
n

k

)
xn−k+1 =

1

2
nx

{
(x + 1)n−1 + (x− 1)n−1

}
(9)

which follows from (8) by remarking that:

∑

1≤k≤n

k odd

k

(
n

k

)
xn−k+1 =

1

2

{
n∑

k=1

k

(
n

k

)
xn−k+1 + (−1)n

n∑

k=1

k

(
n

k

)
(−x)n−k+1

}
.

The Lemma is proved.

14



Proof of the parts 2) and 3) of Theorem 5:
We have for any k ∈ {1, . . . , n}:

vk :=
uk . . . un

(n− k)!
≥ (kr)((k + 1)r) . . . (nr)

(n− k)!
= k

(
n

k

)
rn−k+1.

These lower bounds of vk (1 ≤ k ≤ n) implie (by using the above Lemma)
that there exist an integer k ∈ {1, . . . , n} and an odd integer ` ∈ {1, . . . , n} for
which we have:

vk ≥ r(r + 1)n−1 and v` ≥ n

n + 1
r
{
(r + 1)n−1 + (r − 1)n−1

}
.

We conclude by using Relation (1). This completes the proof of Theorem 5. ¥
Proof of Theorem 7. Let us argue by contradiction. Then, we can find a
rational number a

b
> 3

2
(with a, b are positive integers) for which we have for any

arithmetic progression (uk)k with positive difference r, satisfying the hypothesis
of Theorem 5 and for any non-negative integer n ≥ u0 − a

b
r − 1

2
:

lcm{u0, . . . , un} ≥ 1

π

√
r(r + 1)n−1+

u0
r .

We introduce a non-negative parameter δ and the arithmetic progression (uk)k

(depending on δ) with first term u0 := abδ + 1 and difference r := b2δ. The
integers u0 and r are coprime because they verify the Bézout identity (1−abδ)u0+
a2δr = 1. The sequence (uk)k thus satisfies all the hypotheses of Theorem 5.
Since the integer n = 1 satisfies n ≥ u0 − a

b
r − 1

2
= 1

2
, we must have:

lcm{u0, u1} ≥ 1

π

√
r(r + 1)

u0
r . (10)

Further, we have

lcm{u0, u1} = u0u1 = (abδ + 1)
(
(ab + b2)δ + 1

)
= O(δ2)

and
1

π

√
r(r + 1)

u0
r =

1

π
b
√

δ(b2δ + 1)
a
b
+ 1

b2δ = O
(
δ

a
b
+ 1

2

)
.

But since a
b

+ 1
2

> 2, The relation (10) cannot holds for δ sufficiently large.
Contradiction. Theorem 7 follows. ¥
Proof of Theorem 8. Let us prove the assertion 1) of Theorem 8. The
fact that the constant C of this assertion is greater than or equal to 1

π
is an

immediate consequence of the part 4) of Theorem 5. In order to prove the
upper bound C ≤ 3

2
, we introduce a parameter δ ∈ N and the arithmetic
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sequence (uk)k (depending on δ), with first term u0 := 3δ + 2 and difference
r := 2δ + 1. The integers u0 and r are coprime because they verify the Bézout
identity 2u0 − 3r = 1. So, this sequence (uk)k satisfies all the hypotheses of
Theorem 5. Since u0 − 3r+1

2
= 0, we must have for any non-negative integer

n: lcm{u0, . . . , un} ≥ C
√

r(r + 1)n−1+
u0
r , in particular (for n = 0): u0 ≥

C
√

r(r + 1)
u0
r
−1, hence:

C ≤ u0√
r(r + 1)

u0
r
−1

.

Since this last upper bound holds for any δ ∈ N, we finally deduce that:

C ≤ lim
δ→+∞

u0√
r(r + 1)

u0
r
−1

= lim
δ→+∞

3δ + 2√
2δ + 1(2δ + 2)

δ+1
2δ+1

=
3

2

as required.
Now, let us prove the assertion 2) of Theorem 8. Let n0 be a fixed non-

negative integer. As above, the lower bound C(n0) ≥ 1
π
is an immediate con-

sequence of the part 4) of Theorem 5. In order to prove the upper bound
of Theorem 8 for the constant C(n0), we choose an integer n1 such that
n0 + 3 ≤ n1 ≤ 2n0 + 6 and that (n1 + 1) is prime (this is possible from
the Bertrand postulate). Then, we introduce a parameter δ ∈ N which is not a
multiple of (n1 +1) and the arithmetic progression (uk)k (depending on δ), with
first term u0 := 3δn1! and difference r := 2δn1! + n1 + 1. These integers u0

and r are coprime. Indeed, a common divisor d ≥ 1 between u0 and r divides
3r− 2u0 = 3(n1 + 1), thus it divides gcd{u0, 3(n1 + 1)} = 3gcd{δn1!, n1 + 1}.
Further, the fact that (n1 + 1) is prime implies that (n1 + 1) is coprime with
n1!, moreover since δ is not a multiple of (n1 + 1), the integer (n1 + 1) also is
coprime with δ. It follows that (n1 +1) is coprime with the product δn1!. Hence
d divides 3. But since 3 divides 2δn1! (because n1 ≥ 3) and 3 doesn’t divide
n1 + 1 (because n1 + 1 is a prime number ≥ 5) then 3 cannot divide the sum
2δn1! + (n1 + 1) = r, which proves that d 6= 3. Consequently d = 1, that is
u0 and r are coprime effectively. The sequence (uk)k which we have introduced
thus satisfies all the hypotheses of Theorem 5. Since n1 ≥ max{n0, u0 − 3r+1

2
}

(because n1 ≥ n0 + 3 and u0 − 3r+1
2

= −3
2
n1 − 2 < 0), then we must have

lcm{u0, . . . , un1} ≥ C(n0)
√

r(r + 1)n1−1+
u0
r . This gives:

C(n0) ≤ lcm{u0, . . . , un1}√
r(r + 1)n1−1+

u0
r

.

Now, since u0 is a multiple of n1!, we have from Theorem 4: lcm{u0, . . . , un1} =
u0...un1

n1!
. Hence:

C(n0) ≤ u0 . . . un1

n1!
√

r(r + 1)n1−1+
u0
r

.
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Since this last upper bound of C(n0) holds for any δ ∈ N which is not a multiple
of (n1 + 1), then we deduce that:

C(n0) ≤ lim
δ→+∞

δ 6≡0 mod(n1+1)

u0 . . . un1

n1!
√

r(r + 1)n1−1+
u0
r

. (11)

Let us calculate the limit from the right-hand side of (11). We have:

u0 . . . un1 =

n1∏

k=0

(u0 + kr) =

n1∏

k=0

{(2k + 3)n1!δ + k(n1 + 1)}

∼+∞

(
n1!

n1+1
n1∏

k=0

(2k + 3)

)
δn1+1

and:
√

r(r + 1)n1−1+
u0
r = (2δn1! + n1 + 1)1/2 (2δn1! + n1 + 2)

n1−1+
3δn1!

2δn1!+n1+1

∼+∞ (2δn1!)
n1+1.

Then:

u0 . . . un1

n1!
√

r(r + 1)n1−1+
u0
r

∼+∞

n1∏

k=0

(2k + 3)

2n1+1n1!
=

(n1 + 1)(n1 + 3
2
)

4n1

(
2n1 + 1

n1

)
.

In the other words:

lim
δ→+∞

u0 . . . un1

n1!
√

r(r + 1)n1−1+
u0
r

=
(n1 + 1)(n1 + 3

2
)

4n1

(
2n1 + 1

n1

)
.

It is easy to show (by induction on k) that for any non-negative integer k, we
have

(
2k+1

k

)
<
√

2 4k√
k+ 3

2

. Using this estimate for k = n1, we finally deduce that:

lim
δ→+∞

u0 . . . un1

n1!
√

r(r + 1)n1−1+
u0
r

<
√

2(n1 + 1)

√
n1 +

3

2

< 4(n0 + 4)
√

n0 + 4 (because n1 ≤ 2n0 + 6).

The upper bound C(n0) < 4(n0 + 4)
√

n0 + 4 follows by substituting this last
estimate into (11). This completes the proof of Theorem 8. ¥
Proof of Theorem 9. We first prove Theorem 9 in the particular case m = 0.
We deduce the general case of the same Theorem by shifting the terms of the
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sequence u = (uk)k. Let u be a sequence as in Theorem 9.
• The case m = 0: From Theorem 2, the integer lcm{u0, . . . , un} is a multiple
of the rational number

R :=
u0 . . . un

lcm

{ ∏

0≤i≤n,i6=j

(ui − uj) ; j = 0, . . . , n

} . (12)

Now, since we have for any i, j ∈ N:
ui − uj = {ai(i + t) + b} − {aj(j + t) + b} = a(i− j)(i + j + t),

then:
∏

0≤i≤n,i6=j

(ui − uj) =
∏

0≤i≤n,i6=j

{a(i− j)(i + j + t)}

= an
∏

0≤i≤n,i6=j

(i− j).
∏

0≤i≤n,i6=j

(i + j + t)

=

{
an(−1)j (n−j)!(n+j)!

2
if t = 0

an(−1)j (n−j)!(n+j+t)!
ϕ(j,t)

1
2j+t

if t ≥ 1
,

where ϕ(j, t) := 1 if t = 1 and ϕ(j, t) := (j + 1) . . . (j + t− 1) if t ≥ 2. Since
(n−j)!(n+j + t)! divides (2n+ t)! (because (2n+t)!

(n−j)!(n+j+t)!
=

(
2n+t
n−j

) ∈ N) and (if

t ≥ 1) the integer ϕ(j, t) is a multiple of (t−1)! (because ϕ(j,t)
(t−1)!

=
(

j+t−1
t−1

) ∈ N),
then the product

∏

0≤i≤n,i6=j

(ui − uj) divides the integer (which does not depend on

j):

f(t, n) :=

{
an (2n)!

2
if t = 0

an (2n+t)!
(t−1)!

if t ≥ 1
.

Since j is arbitrary in {0, . . . , n}, then the integer lcm{∏0≤i≤n,i6=j(ui− uj); j =
0, . . . , n} divides the integer f(t, n). It follows that the rational number R (of
(12)) is a multiple of the rational number u0...un

f(t,n)
= Au(t,0,n)

an . Consequently, the

integer lcm{u0, . . . , un} is a multiple of the rational number Au(t,0,n)
an . Finally,

since each term of the sequence u is coprime with a (because gcd{a, b} = 1), we
conclude from the Gauss Lemma that the integer lcm{u0, . . . , un} is a multiple
of the rational number Au(t, 0, n) as required.
• The general case (m ∈ N): Let us consider the new sequence v = (vk)k∈N with
general term:

vk := uk+m = a′k(k + t′) + b′,
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where a′ := a, t′ := 2m + t and b′ := am(m + t) + b.
Since these integers a′, t′ and b′ verify a′ ≥ 1, t′ ≥ 0 and gcd{a′, b′} =
gcd{a, b} = 1 obviously, then the sequence v satisfies all the hypotheses of
Theorem 9. Thus, from the particular case (proved above) of this Theorem,
the integer lcm{v0, . . . , vn−m} = lcm{um, . . . , un} is a multiple of the rational
number Av(t′, 0, n − m) = Au(t,m, n) which provides the desired conclusion.
¥
Proof of Corollary 10. From Theorem 9, the integer lcm{u0, . . . , un} is a
multiple of the rational number:

Au(t, 0, n) :=

{
2u0...un

(2n)!
if t = 0

(t− 1)! u0...un

(2n+t)!
if t ≥ 1

.

Let us get a lower bound for this last number which doesn’t depend on the terms
of the sequence u. Using the obvious lower bounds uk ≥ ak(k+ t) (1 ≤ k ≤ n),
we have:

u0 . . . un ≥ b{a.1.(1 + t)}{a.2.(2 + t)} . . . {a.n.(n + t)} = ban n!(n + t)!

t!
,

then:

Au(t, 0, n) ≥




2b an

(2n
n )

if t = 0

b
t

an

(2n+t
n )

if t ≥ 1
≥

{
2b

(
a
4

)n if t = 0

b
t2t

(
a
4

)n if t ≥ 1

(because
(
2n
n

) ≤ 22n = 4n and
(
2n+t

n

) ≤ 22n+t = 2t4n). The lower bound of
Corollary 10 follows. ¥
Proof of Theorem 11. Theorem 11 is only a combination of the results of
Theorems 3 and 4 which we apply for the arithmetic progression (u`)`∈N with
general term u` = ` + n (where n ∈ N is fixed). ¥
Proof of Theorem 12. Let us prove the first assertion of Theorem 12. Giving
k a non-negative integer and n a positive integer, we easily show that for any
non-negative integer j ≤ k, we have:

n

(
n + k

k

)(
k

j

)
= (n + j)

(
n + j − 1

j

)(
n + k

k − j

)
.

It follows that the integer lcm
{
n
(

n+k
k

)(
k
j

)
; j = 0, . . . , k

}
= n

(
n+k

k

)
lcm

{(
k
0

)
, . . . ,(

k
k

)}
is a multiple of each integer n + j (0 ≤ j ≤ k). Then it is a multiple of

lcm{n, n + 1, . . . , n + k}, as required.
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Now, in order to prove the second assertion of Theorem 12, we introduce the
sequence of maps (gk)k∈N of N∗ into N∗ which is defined by:

gk(n) :=
n(n + 1) . . . (n + k)

lcm{n, n + 1, . . . , n + k} (∀k ∈ N,∀n ∈ N∗).

Let us show that (gk)k satisfies the induction relation:

gk(n) = gcd{k!, (n + k)gk−1(n)} (∀(k, n) ∈ N∗2). (13)

For any pair of positive integers (k, n), we have:

gk(n) :=
n(n + 1) . . . (n + k)

lcm{n, n + 1, . . . , n + k}
=

n(n + 1) . . . (n + k)

lcm {lcm{n, n + 1, . . . , n + k − 1}, n + k}
=

n(n + 1) . . . (n + k)
lcm{n,n+1,...,n+k−1}.(n+k)

gcd{lcm{n,n+1,...,n+k−1},n+k}

=
n(n + 1) . . . (n + k − 1)

lcm{n, n + 1, . . . , n + k − 1} gcd {lcm{n, n + 1, . . . , n + k − 1}, n + k}
= gcd {n(n + 1) . . . (n + k − 1), (n + k)gk−1(n)} .

Then, the relation (13) follows by remarking that the product n(n + 1) . . . (n +

k − 1) is a multiple of k! (because n(n+1)...(n+k−1)
k!

=
(

n+k−1
k

) ∈ N) and that
gk(n) divides k! (according to Theorem 11).

Now, giving a non-negative integer k, by reiterating the relation (13) several
times, we obtain:

gk(n) = gcd{k!, (n + k)gk−1(n)}
= gcd{k!, (n + k)(k − 1)!, (n + k)(n + k − 1)gk−2(n)}
...
= gcd{k!, (n + k) · (k − 1)!, (n + k)(n + k − 1) · (k − 2)!, . . . ,

(n + k)(n + k − 1) · · · (n + k − `)gk−`−1(n)}

for any positive integer n and any non-negative integer ` ≤ k − 1. In particular,
for ` = k − 1, since g0 ≡ 1, we have for any positive integer n:

gk(n) = gcd{k!, (n + k) · (k − 1)!, (n + k)(n + k − 1) · (k − 2)!, . . . ,

(n + k)(n + k − 1) · · · (n + 1).0!} (14)
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Now, if n is a given positive integer satisfying the congruence n + k + 1 ≡
0 mod(k!), we have:

n + k ≡ −1 mod(k!) , (n + k)(n + k − 1) ≡ (−1)22! mod(k!) , . . . ,

(n + k)(n + k − 1) · · · (n + 1) ≡ (−1)kk! mod(k!);

consequently, the relation (14) gives:

gk(n) = gcd {k!, 1!(k − 1)!, 2!(k − 2)!, . . . , k!0!} .

Hence:
k!

gk(n)
=

k!

gcd {0!k!, 1!(k − 1)!, . . . , k!0!}
= lcm

{
k!

0!k!
,

k!

1!(k − 1)!
, . . . ,

k!

k!0!

}

= lcm

{(
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

)}
.

But on the other hand, according to the definition of gk(n), we have:

k!

gk(n)
=

lcm{n, n + 1, . . . , n + k}
n
(

n+k
k

) .

We thus conclude that:

lcm{n, n + 1, . . . , n + k} = n

(
n + k

k

)
lcm

{(
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

)}

which gives the second assertion of Theorem 12 and completes this proof. ¥
Open Problem. By using the relation (13), we can easily show (by induction
on k) that for any non-negative integer k, the map gk which we have introduced
above is periodic of period k!. In other words, the map gk (k ∈ N) is defined
modulo k!. Then, for k fixed in N, it is sufficient to calculate gk(n) for the k!
first values of n (n = 1, . . . , k!) to have all the values of gk. Consequently, the
relation (13) is a practical mean which permits to determinate step by step all the
values of the maps gk. By proceeding in this way, we obtain: g0(n) ≡ g1(n) ≡ 1
(obviously),

g2(n) =

{
1 if n is odd
2 if n is even

, g3(n) =

{
6 if n ≡ 0 mod(3)

2 otherwise
, . . . etc.

This calculation point out that the smallest period of the map g3 is equal to
3(6= 3!). This lead us to ask the following interesting open question:

Giving k a non-negative integer, what is the smallest period for the
map gk?
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