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Abstract

Let A be an additive basis of order h and X be a finite nonempty
subset of A such that the set A\ X is still a basis. In this article, we
give several upper bounds for the order of A\ X in function of the order
h of A and some parameters related to X and A. If the parameter in
question is the cardinality of X, Nathanson and Nash already obtained
some of such upper bounds, which can be seen as polynomials in A with
degree (|X| + 1). Here, by taking instead of the cardinality of X the

diam(X)
sod(i—y [ zgex] We show that the order of

A\ X is bounded above by (h(h;?’) + dh(h_lg(h+4)). As a consequence,
we deduce that if X is an arithmetic progression of length > 3, then the
upper bounds of Nathanson and Nash are considerably improved. Further,
by considering more complex parameters related to both X and A, we get
upper bounds which are polynomials in h with degree only 2.

parameter defined by d :=
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1 Introduction

An additive basis (or simply a basis) is a subset A of Z, having a finite
intersection with Z~ and for which there exists a natural number h such that
any sufficiently large positive integer can be written as a sum of h elements of A.
The smaller number h satisfying this property is called “the order of the basis A"
and we note it G(A). If A is a basis of order h and X is a finite nonempty subset
of A such that A\ X is still a basis, the problem dealt with here is to find upper
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bounds for the order of A\ X in function of the order h of A and parameters
related to X (resp. X and A). The particular case when X contains only one
element, say X = {x}, was studied for the first time by Erdds and Graham [1].
These two last authors showed that G(A\{z}) < 2h®+1hlog h+2h. After hem,
several works followed in order to improve this estimate: In his Thesis, by using
Kneser's theorem (see e.g. [5] or [4]), Grekos [2] improved the previous estimate
to G(A\ {z}) < h?+ h. By still using Kneser's theorem but in a more judicious
way, Nash [7] improved the estimate of Grekos to G(A \ {z}) < 3(h® + 3h).
Finally, by combining Kneser's theorem with some new additive methods, Plagne

[10] obtained the refined estimate G(A \ {z}) < @ + [21], which is best

known till now. Plagne conjectured that G(A \ {z}) < w + 1, but this

has not yet been proved. Notice also that the optimality of such estimates was
discussed by different authors (see e.g. [1], [2], [3], [10]).

The general case of the problem was studied by Nathanson and Nash (see
e.g. [9], [6], [8] and [7]). For h,k € N, these two authors noted G(h) the
maximum of all the natural numbers G(A \ X), where A is an additive basis
of order h and X is a subset of A with cardinality & such that A\ X is still a
basis. In [8], they proved that G} (h) has order of magnitude h**1. Indeed, they
showed that

h k+1 92
(k:—+1> +O(h*) < Gi(h) < Ehk“ + O(h¥)

(see Theorem 4 of [8]).
Since then, the above bounds of Gj(h) were improved. In [11], Xing-de lJia

showed that
L(_n ) O(h*
> —
Gk(h)_g(k+1) + O(h")

and in [7], Nash obtained the following

Theorem 1.1 ([7], Proposition 3 simplified) Let A be a basis and X be a
finite subset of A such that A\ X is still a basis. Then, noting h the order of A
and k the cardinality of X, we have:

G(A\X)g(h+1)(h+z_1> —k(h’,ﬁ_]ﬁf)

Actually, the original estimate of Nash (Proposition 3 of [7]) is that G(A\ X) <
(h+,]z_1) + 2?2—01 (H;_l)(h —4). But we can simplify this by remarking that for
all 7 € N, we have:

()0
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and

() =) ) - ()

Consequently, we have:

hl(k+z—1) , h1<k+i—1) h1,<k+i—1)
(h—i) = h _ - i _

=0 i=0 ! i=0 !

ST (TR (1)
_ h(h—}:le) —k(ﬁf?)
(R (Y,

which leads to the estimate of Theorem [1.1.

In Theorem (1.1, the upper bound of G(A\ X) is easily seen to be a polynomial
in h with leading term (ZH i, thus with degree (k + 1). In this paper, we show
that it is even possible to bound from above G(A\ X) by a polynomial in i with
degree constant (3 or 2) but with coefficients depend on a new parameter other
the cardinality of X. By setting

_ diam(X)

X))
where diam(X') denotes the usual diameter of X and §(X) := ged{z—y | z,y €
X}, we show that

h(h + 3) N dh(h —1)(h+4)

G4\ X) < = )

(see Theorem 4.1)).

Also, by setting
n = min la — b|,
a,be A\ X ,a#b
|la—b|>diam(X)

we show that

GA\X)<nR*-1)+h+1 (see Theorem 4.3).



Finally, by setting

= min di XU
pi= min iam (X U {y}),

we show that

hy(hp + 3)

G(A\X) < 5

(see Theorem 4.4).

It must be noted that this last estimate is obtained by an elementary way as
a consequence of Nash' theorem while the two first estimates are obtained by
applying Kneser's theorem with some differences with [7].

In practice, when h and k are large enough, it often happens that our es-
timates are better than that of Theorem 1.1, The more interesting corollary is
when X is an arithmetic progression: in this case we have d = k — 1, implying
from our first estimate an improvement of Theorem [1.1.

2

2.1
(1)

Notations, terminologies and preliminaries

General notations and elementary properties

If X is a finite set, we let | X'| denote the cardinality of X. If in addition
X CZand X # 0, we let diam(X') denote the usual diameter of X (that
is diam(X) := max, yex [¢ — y|) and we let

0(X) =ged{zr —y |2,y € X}
(with the convention 6(X) =1 if | X| = 1).

If B and C' are two sets of integers, the notation B ~ C' means that the
symmetric difference BAC' (= (B\ C)U(C'\ B)) is finite; namely B and
C' differ just by a finite number of elements.

If Ay, Ay, ..., A, (n > 1) are nonempty subsets of an abelian group, we
write

ZAZ SZ{CL1+CL2—|—"'+CL7L | CLZ'GAZ‘}.
i=1

If Ay = Ay =--- = A, #Z, it is convenient to write the previous set as
nAy; while nZ stands for the set of the integer multiples of n.

If U = (u;),cy is @ nondecreasing and non-stationary sequence of integers,
we write, for all m € N, U(m) the number of terms of U not exceeding
m.



(Stress that if U is increasing, then it is just considered as a subset of Z
having a finite intersection with Z7).
e We call “the lower asymptotic density” of U the quantity defined by

A = timint L™ ¢ [0, 400

m—-+o00 m

If U is increasing (so it is a subset of Z having a finite intersection with
Z~), we clearly have d(U) < 1.

It Uy,Us,...,U, (n > 1) are nondecreasing and non-stationary sequences
of integers, indexed by N, the notation U; V Uy V --- vV U, (or VI, U,)
represents the aggregate of the elements of Uy, ..., U,; each element being

counted according to its multiplicity.
e It's clear that for all m € N, we have: (U, V---VU,)(m) =" U(m).
So, it follows that:

mmvuwmgziﬁm)

e Further, if Uy, ..., U, are increasing (so they are simply sets), we clearly
have:
d{UyVv---VvU,) >dUU---UU,).

It is easy to check that if U is a nondecreasing and non-stationary sequence
of integers (indexed by N) and ¢ € Z, then we have:

(U+t)(m) =U(m)+ O(1).

If B is a nonempty set of integers and ¢ is a positive integer, we denote 7
the image of B under the canonical surjection Z — g%. We also denote

B the set of all natural numbers which are congruent modulo g to some
element of B; in other words:

BY .= (B + ¢Z)NN.

e We can easily check that if B and C' are two nonempty sets of integers
and ¢ is a positive integer, then we have:

(B4 ()9 ~ BW 4 C.

In particular, if we have B ~ B then we also have B+ C ~ (B +C)W9.



2.2  The theorems of Kneser (see [4], Chap 1)

Theorem 2.1 (The first theorem of Kneser)
Let Ay, As, ..., A, (n > 1) be nonempty sets of integers having each one a finite
intersection with Z—. Then either

i)

or there exists a positive integer g such that

n n (9)
> A~ (ZAZ) : ()

Remarks:

o We call (1) “the first alternative of the first theorem of Kneser" and we call (II)
“the second alternative of the first theorem of Kneser".

e The relation (II) implies in particular that the set >""" | A, is (starting from
some element) a finite union of arithmetic progressions with common difference

g.

Theorem 2.2 (The second theorem of Kneser)
Let G be a finite abelian group and B and C' be two nonempty subsets of G.
Then, there exists a subgroup H of G such that

B+C=B+C+H

and
|B+C|>|B+ H|+|C+ H|—|H]|.

In the applications, we use the second theorem of Kneser in the form given by the
corollary below. We first need to define the so-called “a subset not degenerate
of an abelian group” and then to give a simple property related to this one.

Definitions:

e If G is an abelian group and B is a subset of G, we say that “ B is not degenerate

in G if we have stabg(B) = {0} (where stabg(B) denotes the stabilizer of B

in G).

e If B is a set of integers and ¢ is a positive integer, we say that “B is not
z

degenerate modulo ¢" if g% is not degenerate in 7

Proposition 2.3 Let G be an abelian group and B and C' be two nonempty
subsets of G such that (B + C) is not degenerate in G. Then also B and C' are
not degenerate in G.



Proof. This is an immediate consequence of the fact that:
stabg(B) + stabg(C) C stabg(B + C). |

Corollary 2.4 Let G be a finite abelian group and By,...,B, (n > 1) be
nonempty subsets of G such that (B, + -- -+ B,,) is not degenerate in G. Then
we have

|Bi+ -+ Bp| > |Bi| 4+ -+ |By| —n+ L.

Proof. It suffices to show the corollary for n = 2. The general case follows by
a simple induction on n and by using Proposition 2.3 Suppose n = 2. Theorem
2.2 gives a subgroup H of G satisfying the two relations By + By, = B1+ By + H
and |By+ Bs| > |By+ H| + |By+ H| — |H|. The first one implies H C
stabg(By + By) = {0}, so H = {0}. By replacing this into the second one, we
conclude to | By + By| > | B1| + | B2| — 1 as required. [

The following proposition (which is an easy exercise) makes the connection
between the first and the second theorem of Kneser:

Proposition 2.5 Let B be a nonempty set of integers and g be a positive
integer. The two following assertions are equivalent:

(i) B is not degenerate modulo g
(ii) There is no positive integer m < g such that B(™ = B

Now, let us explain how we use the theorems of Kneser in this paper. We
first get sets A; = hi(A\ X), i = 0,...,n such that U?_,(A; + 7;) ~ N and
d(Ap) > 0 (where n is a natural number depending on A and X, the h;'s
are positive integers depending only on h and such that hg < n and the 7;'s
are integers). We thus have d(V?_,A;) > 1, implying that the first alternative
of the first theorem of Kneser cannot hold. Consequently we are in the second
alternative of the first theorem of Kneser, namely there exists a positive integer g
such that >0 ) A; ~ (31, Ai)@. By choosing g minimal to have this property,
we deduce from Proposition 2.5 that the set Y , A; is not degenerate modulo

A;

g; in other words the set > ¥ is not degenerate in the group g%. It follows
A;

from Proposition 2.3 that also " | °% is not degenerate in g%. Then by applying

Corollary 2.4 for G = g% and B; = % (1=1,...,n), we deduce that ’—Z%ZlAi

2im1
g —n + 1. Next, from the nature of the sequence (‘%’) (pointed out
reN

in Lemma (3.3 of the next section) and the hypothesis that A\ X is a basis,

>

A;

97

—n+1>g—n+1 (since U ,(A;+7,) ~N); so ‘W‘ >



we derive that |atthatn)(AX) (Batthntn)( X)) %. We thus
g

9z 9Z

have ((hy+---+h, +n)(A\ X))@ ~ N. But since on the other hand we have
(in view of the elementary properties of §2.1): ((hy+- -+ h, +n)(A\ X)) =
(Aot -+ An) 4+ (n—=ho)(A\ X)W ~ (Ag+- -+ A,) 9 +(n— o) (A\ X) ~
Ao+ -+ A+ (n—ho)(A\X) = (b +-- -+ h, +n)(A\ X), it finally follows
that (A1 + -+ hy +n)(A\ X) ~ N, that is G(A\ X) < h; +--- + h, +n.

In the work of Nash [7], the parameter n depends on h and |X|. Actually,
its dependence in | X| stems from the upper bounds of the cardinalities of the
sets (X ({ =0,...,h). In[7], the upper bound used for each [(X| is (‘X‘Jf_l),
which is a polynomial in ¢ with degree (| X | — 1) and then leads to bound from
above G(A \ X) by a polynomial in i with degree (|X|+ 1). However, that
estimate of |/.X| is very large for many sets X; for example if X is an arithmetic
progression, we simply have |¢(X| = ¢|X| — ¢ + 1 which is linear in ¢ and (as
we will see it later) allows to estimate G(A \ X) by a polynomial with degree
3 in h. In order to obtain such an estimate for G(A \ X) in the general case,
our idea (see Lemmas 3.1l and 3.2) consists to replace | X | by another parameter
in X (resp. X and A) for which the cardinality of each of the sets /X (resp.
other more complex sets) is bounded above by a linear function in ¢ (resp. simple
function in h). The upper bounds obtained in this way for G(A \ X) are simply
polynomials in h with degrees 3 or 2 and with coefficients linear in the considered
parameters (see Theorems 4.1l and 4.3). On the other hand, it must be noted
that upper bounds for G(A \ X) which are polynomials with degrees 3 or 2 in
h can be directly derived from the theorem of Nash, but in this way we lose the
linearity in the considered parameter (see Theorem /4.4 and Remark /4.5).

‘ = ¢, hence

3 Lemmas

The two first lemmas which follow constitute the main differences with Nash’
work [7] about the use of Kneser's theorems. While the third one gives the nature
(in terms of monotony) of some sequences (related to a given finite abelian group)
which also plays a vital part in the proof of our results.

Lemma 3.1 Let X be a nonempty finite set of integers. Then we have:

diam(X)

=500

+ 1.

In addition, this inequality becomes an equality if and only if X is an arithmetic
progression.



Proof. The lemma is obvious if | X| = 1. Assume for the following that
| X| > 2 and write X = {zo,21,...,2,} (n > 1), with g < 27 < --- <
x,. Since the positive integers ©; — x; 1 (i = 1,...,n) are clearly multiples
of §(X) then we have z; — z;_1 > 6(X) (Vi = 1,...,n). It follows that

Ty —x0 = (2 — x21) > nd(X), which gives n < Z2=to — di;gg(). Hence

3(X)
| X|=n+1< di?(gg() + 1 as required.
Further, the above proof shows well that the inequality of the lemma is reached
if and only if we have z; — ;-1 = §(X) (Vi = 1,...,n) which simply means

that X is an arithmetic progression. The proof is complete. |

Lemma 3.2 Let X be a finite nonempty set of integers and B be an infinite
set of integers having a finite intersection with Z~. Define:

n = min |b— V.
b,b' € B,b£b
[b—b'|>diam(X)
Then, for all u,v € N, g € N*, we have:
(uB 4+ vX)(m) <n.((u+v)B)(m)+ O(1)

and

uB+vX‘ <
[/
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Proof. Since we have for all 7 € Z: (uB +vX + 7)(m) = (uB + vX)(m) +

O(1) (according to the part (6) of §2.1) and “B+g”ZX+T = “B;'ZUX

then there is no loss of generality in translating B and X by integers. By
translating, if necessary, X, assume that 0 is its smaller element and write X =
{zo,21,...,2,} (n € N), with 0 = 2y < 21 < --- < x,. Next, let by,b € B
such that b — by = 7. By translating, if necessary, B, assume by = 0. Then we
have

‘ (obviously),

b=mn>diam(X) = x,.

In this situation, we claim that we have

wB+vX)C |J (u+v)B+7) (1)

0<7<n

which clearly implies the two inequalities of the lemma. So, it just remains to
show (1). Let N € (uB+wvX) and show that there exists a non-negative integer



7 < nsuch that N € (u+v)B + 7. Since 0 = by = o € BN X, the fact that
N € (uB +vX) means that N can be written in the form

N =uiby + -+ + ugbp + v121 + - -+ + VLT, (2)
with &k, uq, ..., ug,v1,...,0, € N, by,....0, € B, uy +--- +ux < u and
v+ v, <o
Now, since z1 < x5 < -+ < x, < 1, then we have viz1 + - + v,z, <

(v1 + -+ + v,)n < vny, which implies that the euclidean division of the non-
negative integer (vixy + - -+ + v,x,) by 1 yields:

0Ty + - F VT, =t 4T, (3)
witht,7 € N, t <wvand 0 < 7 <. By reporting (3) into (2), we finally obtain
N =uiby + - +upby, +tn+ 7. (4)

Since 0 =by € B, by,...,b,,n € B (recall that n =b) and ug + -+ +up +t <
u + v, then the relation (4) is well a writing of NV as a sum of (u + v) elements
of B and 7; in other words N € (u+ v)B + 7, giving the desired conclusion.
The proof is complete. |

Lemma 3.3 Let G be a finite abelian group and B be a nonempty subset of
G. Forallr € N, set u, := |rB|. Then, there exists ry € N such that:

Uy < U < -0 < Up

and
Up = Uy, (Vr > ro).

Proof. Firstly, since G is finite, the sequence (u,), is bounded above by |G].
Secondly, we claim that (u,), is nondecreasing. Indeed, by fixing b € B, we have
forall 7 € N: (r+1)B D rB+b, hence u,4y = |(r+1)B| > [rB+b| =
|rB| = u,. It follows from these two facts that there exists 7y € N such that
Upy = Ury+1. By taking 7o minimal to have this property, we have:

Ug < Up < o0 < Upy = Upgp-
To conclude the proof of the lemma, it remains to show that
Up = U, (Vr > rg). (5)
If b € B is fixed, we claim that for all » > ry, we have:

rB=roB+ (r—r9)b (6)
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which clearly implies (5). So, it remains to show (6). To do this, we argue
by induction on r > ro. For r = rg, the relation (6)) is obvious. Next, since
(ro+1)B D roB +band |(ro+ 1)B| = upgr1 = Uy, = |roB| = |r0B + 10|,
then we certainly have (rq + 1)B = roB + b, showing that (6) also holds for
r =19+ 1. Now, let r > ry, assume that (6) holds for » and show that it also
holds for (r 4+ 1). We have:

(r+1)B = (ro+1)B+(r—ro)B
= (roB+b)+ (r—ro)B  (since (6) holds for (19 + 1))
=rB+b
= (roB+ (r —r9)b) +b  (from the induction hypothesis)
= roB+ (r+1—r)b.

Hence (6) also holds for (r + 1). This finishes this induction and completes the
proof. |

4 Main Results

Throughout this section, we fix an additive basis A and a finite nonempty
subset X of A such that A\ X is still a basis. We put h := G(A) and we define

diam(X) . o
=y 0 1= min  |a—b| and p:= min diam(X U {y}).
0(X) a,beA\X,a#b yeA\X
|a—b|>diam(X)
-1 4
Theorem 4.1 We have G(A\ X) < h(h +3) + dh(h )(h + )

2 6

Proof. Put B:= A\ X, so A = BUX. Then, the fact that A is a basis of
order h amounts to:

hBU((h—1)B+X)U((h—=2)B+2X)U---U(B+ (h—1)X) ~N. (7)

(Remark that hX is finite).

Now, since the set of the left-hand side of (7)) is clearly contained in a finite union
of translates of h B, then by denoting N a number of translates of hB which are
sufficient to cover it, we have (according to the part (6) of §2.1):

(hBU((h—1)B+X)U---U(B+ (h—1)X))(m) < N.(hB)(m) + O(1).

11



It follows that:

lim inf( B)(m)
m—-—+00 m
1. .1
> Ngrgirgﬁ(hBU((h—l)B—l—X)U---U(B+(h— 1)X)) (m)
= % (according to (7).
Thus

d(hB) > % - 0. (8)
Now, according to (7), (8) and the part (5) of §2.1, we have:
d(hBVhBV((h—1)B+X)V((h—2)B+2X)V---V(B+(h—1)X))

> dhB)+d(hBV((h—1)B+X)V---V(B+(h—1)X))
> d(hB)+d(hBU((h—1)B+X)U---U(B+ (h—1)X))
= d(hB)+1
> 1.

So, we have

liminf - ((1B)(m) + (hB)(m) + ((h — DB + X)(m) ©)

+((h=2)B+2X)(m)+---+(B+(h—1)X)(m)} > 1.

Next, according to the part (6) of §2.1 and to Lemma 3.1} each of the quantities
(h=0)B+(X)(m) ({=1,..., h — 1) is bounded above as follows

((h =O)B +€X)(m) < [(X].((h = £)B)(m) + O(1)

< (digigf) - 1) ((h—0)B)(m)+0(1)  (10)
= d+1).((h—2€)B)(m)+ O(1)

(since diam(¢.X) = ¢diam(X) and §({X) = 6(X)).

Then, by reporting these into (9), we obtain:

lim inf —{(hB)(m) + (hB)(m) + (d+ 1).((h — 1)B)(m)

m—-+o0o M,

+(2d+1).(h=2)B)(m) + -+ ((h = Dd+1).B(m)} > 1,

which amounts to

g(th\j( \/ (hﬁ)B))>1. (11)
=0 \ (¢d + 1) times

12



This last relation shows well that the first alternative of the first theorem of
Kneser (applied to the set h B with (¢d + 1) copies of each of the sets (h —¢)B
¢ =0,1,...,h — 1) cannot hold. We are thus in the second alternative of the
first theorem of Kneser; that is there exists a positive integer ¢ such that

h—1 h—1 (9)
(h+ > (td+1)(h - e)) B~ <<h +3 (td+1)(h - e)) B> . (12)

=0 (=0
Let's take g minimal in (12). This implies from Proposition 2.5 that the set

(h+30=2(¢d+1)(h—£))B is not degenerate modulo g; in other words, the set
(h+ >0 (ed + 1)(h—1)) % is not degenerate in . It follows from Proposition

2.3/ that also the set ( ZL:_OI(M + 1)(h — é))—Z is not degenerate in g— Then,
from Corollary 2.4, we have

h—1 h—
— 0B
‘ (Z (td+1)(h — 1) ) Z %
0 =0 + 1) times g
h—1 h—1
— 0B
> (€d+1)’%)— (td+1) + 1. (13)
=0 g £=0

Now, let's bound from below the sum Z?:_()l(fd + 1)‘(}?—?3‘. We have for all
te{0,1,...,h—1}:

i) (s g
= |£X’-'<h_—£)3‘ (according to Lemma 3.1)

Hir

’ h—1) B+€X
N 9Z
hence
h—1 h—1
(h—0)B (h — €B+€X
>
H(MH)‘ Z > ;
S Bu((h—1)B+X)u---U(B+(h—1)X)
> 7z
=g (according to (7).

13



By reporting this into (13), we have

(§€d+1 —6)

£=0

hz ld+1) (14)

Now, from Lemma 3.3, we know that the sequence of natural numbers (

B
7”_
increases until reaching its maximal value which it then continues to take indef-
initely. In addition, because G(B)B ~ N, we have ‘G(B)g%’ = )g%
showing that g is the maximal value of the same sequence. On the other hand,
if we assume that the finite sequence

(|rZ ) is increasing, we would have (accord-
IE S b (Ud+1) (h—0) <r<3" ) (d+1) (h—L+1)

ing to (14)): .
. B
<Z€d+1(h £+1)>9—Z

£=0

>g+1

which is impossible. Consequently, the sequence (’rg%‘) becomes constant
reN

(equal to g) before its term of order r = ?;Ol(ﬁd+ 1)(h—/¢+1). In particular,

we have
h—1 B
(ld+1)(h—L+1
‘(Z +1)(h— L+ )) AR
and then -
B Z
(ld+1)(h—C+1 —
(j{: + + )) AR
(=0
implying that

h—1 (9)
((Z(M +1)(h—(+ 1)) B) = N. (15)

=0

But on the other hand, since 30— (¢d+1)(h—£+1) > h+3)"0 (¢d+1)(h—10),
we have (according to the relation (12) and the property of the part (7) of §2.1):

h—1 h—1 (9)
(Z(&H 1)(h— ¢+ 1)) B~ <<Z(€d+ 1)(h—(+ 1)> B) . (16)

=0 =0

By comparing (15) and (16)), we finally deduce that

h—1
(Z (¢d + 1)( h—€+1))B~N,

0

14



which gives

T
L

G(B) < (M+4xh—£+1y:hm;ﬁ)+dmh—i¥h+®
=0
(since Y21l = M=) gpg -l - A(A-DEE-L)y
The theorem is proved -

Corollary 4.2 If in addition X is an arithmetic progression, then we have:

h(h+3 h(h—1)(h+4
Glayx) < My gy MEZVEED,
Proof. By Lemma 3.1, we have | X| = dig?;go +1=d+1, henced = | X|—1.
The corollary then follows at once from Theorem /4.1. |

Theorem 4.3 We have G(A\ X) <n(h* —1)+h+ 1.

Proof. We proceed as in the proof of Theorem 4.1 with some differences; so
we only detail these differences. Putting B := A\ X, we repeat the proof of
Theorem 4.1 until the relation (9). After that, using Lemma 3.2, we bound from
above each of the quantities ((h — ¢)B +¢X)(m) ({=1,...,h—1) by

((h — 0)B + £X)(m) < n.(hB)(m) + O(1). (10))

Then, by reporting these into (9), we obtain

d \/ (hB) | > 1, (117)

(n(h — 1) 4 2) times

which shows well that the first alternative of the first theorem of Kneser (applied
to (n(h — 1) +2) copies of the set hB) cannot hold. Consequently, we are in the
second alternative of the first theorem of Kneser, that is there exists a positive
integer g such that

(n(h — 1) + 2)hB ~ ((n(h — 1) + 2)hB)\Y . (12)

Let's take g minimal in (12'). Then, Propositions 2.5 and 2.3/ imply that the set
}(117(h -1+ 1)hgﬁZ is non degenerate in g%. It follows from Corollary 2.4 that we
ave:
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hB
>

(n(h — 1) 4+ 1) times g

B
(n(h—1) + 1)hg+Z’ =

hB
> (n(h — 2 b —1). 13/
> (0= 1)+ D[ | =tk = 1) (13)
Next, using the second inequality of Lemma 3.2, we have
hB X h—10)+()B
=1+ 1|27 | - Zn.]“ B 4|12
9Z —
> “(h—0B+X ‘
— 97
> U —{) B +(X)
=g (according to (7)).
By reporting this into (13'), we have
B ,
0= 1) 4 D8 2| > g = ot~ 1), (1)

It follows from Lemma 3.3 (as we applied it in the proof of Theorem /4.1) that

the sequence (‘ =z

) s stationary in g before its term of order r = (n(h —
reN

1) 4+ 1)(h + 1). In particular, we have ‘(n(h —1)+1)(h+ 1)9% = g; hence
(n(h—=1) +1)(h + 1)% = gZ—Z, implying that

((n(h = 1)+ 1)(h+1)B)Y ~ N. (15)

But on the other hand, since n > 1, we have (n(h — 1)+ 1)(h + 1) > (n(h —
1) 4+ 2)h, which implies (according to the relation (12/) and the property of the
part (7) of §2.1) that

(n(h—1)+1)(h+1)B ~ ((n(h— 1)+ 1)(h+ 1)B)¥. (16')
By comparing (15) and (16'), we finally deduce that
(mh—=1)4+1)(h+1)B ~ N,

which gives G(B) < (n(h — 1)+ 1)(h + 1) = n(h* — 1) + h + 1, as required.
The theorem is proved. |
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Theorem 4.4 We have G(A\ X) < w

Proof. First, notice that ;1 > 1 (since X # ()). Notice also that the parameters
h,uand G(A\ X) are still unchanged if we translate the basis A by an integer.
Let yo € A\ X such that p = diam(X U {yo}); so by translating if necessary A
by (—yo), we can assume (without loss of generality) that yo = 0. Then putting
X =A{z1,...,x,} (n > 1) with 21 < 29 < -+ <z, we have

p = diam(X U {0}) = max{|z1|, |z2]|,. .., |zn|, zn — 21} (17)

We are going to show that the set (A\ X)U{=£1} is a basis of order < hyu. The
result of the theorem then follows from the particular case 'k = 1' of Theorem
1.1 of Nash. We distinguish the three following cases:

1%t case. (if x; > 0)

In this case, the elements of X are all non-negative. Let N be a natural number
large enough that it can be written as a sum of h elements of A; that is

N=a+ - +a+az+- -+ oy, (18)

with t,aq, ..., a0, €N, ay,...,a, € A\ X and t+a; + -+ a,, = h.

Next, since the non-negative integer (a1 + - -+ + a,x,) is obviously bounded
above by (ay + -+ ap)u = (h—t)pu < hyp — t, then it is a sum of (hu —t)
elements of the set {0,1}. It follows from (18) that IV is a sum of hu elements
of the set (A\ X)U{0,1} = (A\ X)U{1}. This last fact shows well (since N
is an arbitrary sufficiently large integer) that the set (A \ X) U {1} is a basis of
order A’ < hpu. Hence

e either 1 € A\ X, in which case we have (A\ X) = (A\ X)U {1} and then
G(A\ X) = h' < hy < lollit3),

eor 1 ¢ A\ X, in which case we have (A\ X) = ((A\X)U{1})\ {1}, implying
(according to Theorem [1.1/for k = 1) that G(A \ X) < X008 < hulhuts)
So, in this first case, we always have G(A4 \ X) < w as required.

2" case. (if 2, <0)
In this case, the elements of X are all non-positive. Let N be a natural number
large enough that can be written as a sum of h elements of A; that is

N:a1+...+at—}—all’1+“'+anxna (19)

with t,aq,...,a, €N, ay,...,a, € A\ X and t+a; +--- + a,, = h.

Next, since the non-positive integer (o121 + -+ + @, ) is bounded below by
—(aqg+--Fay)p = (t—h)pu >t —hu, then it is a sum of (hu —t) elements of
the set {0, —1}. It follows from (19) that N is a sum of hu elements of the set
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(A\X)U{0,—1} = (A\ X)U{—1}. This shows well (since N is an arbitrary
sufficiently large integer) that the set (A\ X) U {—1} is a basis of order < hpu.
We finally conclude (like in the first case) that G(A\ X)) < w as required.
3" case. (if z; <0 and z,, > 0)

In this case, we have (from (17)) that yu = z,, — 1. Let N be a natural number
large enough so that the number (N +4hz;) can be written as a sum of i elements
of A; that is

N—l—hxl:a1+-"+at+0é11‘1+"'+04n$n7 (20)

with t,0q,...,0, €Ny ay,...,a; € A\ X andt +a; + -+, = h.
From the identity

a1+ -+, —hay = aa(re — 1) Fag(xs —x1) + - -+ an (T, —x1) —tay,

we deduce (since 0 < zy — a1 <z3—21 < -+ <xp—2x; =pand 0 < —x; <
T, —x1—1=p—1) that

O<agzy+- - +apz,—hr; < (ag+--F+a)p+t(p—1) < hu—t,

which implies that the integer (ayzy + - -+ + a,x, — hxy) can be written as a
sum of (hu —t) elements of the set {0,1}. It follows from (20) that IV is a sum
of hu elements of the set (A\ X)U{0,1} = (A\ X) U {1}. This shows that
the set (A\ X)U {1} is a basis of order < hyu and leads (as in the first case) to
the desired estimate G(A \ X) < w The proof is complete. |

Remark 4.5 By using Theorem 1.1l of Nash for k = 1,2, we can also establish
by an elementary way (like in the above proof of Theorem|4.4) an upper bound
for G(A\ X) in function of h and d. Actually, we obtain
hd(hd + 1)(hd
G(A\ X) < ( +6)( +5)
But this estimate is weaker than that of Theorem 4.1 and in addition it is not
linear in d.

Some open questions:

(1) Does there exist an upper bound for G(A\ X), depending only on h and d,
which is polynomial in h with degree 2 and linear in d? (This asks about
the improvement of Theorem 4.1)).

(2) Does there exist an upper bound for G(A\ X), depending only on i and x,
which is polynomial in h with degree 2 and linear in u? (This asks about
the improvement of Theorem 4.4).
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