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Abstract

Let A be an additive basis of order h and X be a finite nonempty
subset of A such that the set A \ X is still a basis. In this article, we
give several upper bounds for the order of A \X in function of the order
h of A and some parameters related to X and A. If the parameter in
question is the cardinality of X, Nathanson and Nash already obtained
some of such upper bounds, which can be seen as polynomials in h with
degree (|X | + 1). Here, by taking instead of the cardinality of X the
parameter defined by d := diam(X)

gcd{x−y | x,y∈X} , we show that the order of

A \X is bounded above by (h(h+3)
2 + dh(h−1)(h+4)

6 ). As a consequence,
we deduce that if X is an arithmetic progression of length ≥ 3, then the
upper bounds of Nathanson and Nash are considerably improved. Further,
by considering more complex parameters related to both X and A, we get
upper bounds which are polynomials in h with degree only 2.

MSC: 11B13
Keywords: Additive basis; Kneser’s theorem.

1 Introduction

An additive basis (or simply a basis) is a subset A of Z, having a finite
intersection with Z− and for which there exists a natural number h such that
any sufficiently large positive integer can be written as a sum of h elements of A.
The smaller number h satisfying this property is called “the order of the basis A”
and we note it G(A). If A is a basis of order h and X is a finite nonempty subset
of A such that A \X is still a basis, the problem dealt with here is to find upper
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bounds for the order of A \ X in function of the order h of A and parameters
related to X (resp. X and A). The particular case when X contains only one
element, say X = {x}, was studied for the first time by Erdös and Graham [1].
These two last authors showed that G(A\{x}) ≤ 5

4
h2+ 1

2
h log h+2h. After hem,

several works followed in order to improve this estimate: In his Thesis, by using
Kneser’s theorem (see e.g. [5] or [4]), Grekos [2] improved the previous estimate
to G(A \ {x}) ≤ h2 +h. By still using Kneser’s theorem but in a more judicious
way, Nash [7] improved the estimate of Grekos to G(A \ {x}) ≤ 1

2
(h2 + 3h).

Finally, by combining Kneser’s theorem with some new additive methods, Plagne
[10] obtained the refined estimate G(A \ {x}) ≤ h(h+1)

2
+ dh−1

3
e, which is best

known till now. Plagne conjectured that G(A \ {x}) ≤ h(h+1)
2

+ 1, but this
has not yet been proved. Notice also that the optimality of such estimates was
discussed by different authors (see e.g. [1], [2], [3], [10]).

The general case of the problem was studied by Nathanson and Nash (see
e.g. [9], [6], [8] and [7]). For h, k ∈ N, these two authors noted Gk(h) the
maximum of all the natural numbers G(A \ X), where A is an additive basis
of order h and X is a subset of A with cardinality k such that A \ X is still a
basis. In [8], they proved that Gk(h) has order of magnitude hk+1. Indeed, they
showed that

(
h

k + 1

)k+1

+ O(hk) ≤ Gk(h) ≤ 2

k!
hk+1 + O(hk)

(see Theorem 4 of [8]).
Since then, the above bounds of Gk(h) were improved. In [11], Xing-de Jia
showed that

Gk(h) ≥ 4

3

(
h

k + 1

)k+1

+ O(hk)

and in [7], Nash obtained the following

Theorem 1.1 ([7], Proposition 3 simplified) Let A be a basis and X be a
finite subset of A such that A \X is still a basis. Then, noting h the order of A
and k the cardinality of X, we have:

G(A \X) ≤ (h + 1)

(
h + k − 1

k

)
− k

(
h + k − 1

k + 1

)
.

Actually, the original estimate of Nash (Proposition 3 of [7]) is that G(A \X) ≤(
h+k−1

k

)
+

∑h−1
i=0

(
k+i−1

i

)
(h− i). But we can simplify this by remarking that for

all i ∈ N, we have:
(

k + i− 1

i

)
=

(
k + i

i

)
−

(
k + i− 1

i− 1

)
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and

i

(
k + i− 1

i

)
= k

(
k + i− 1

i− 1

)
= k

{(
k + i

i− 1

)
−

(
k + i− 1

i− 2

)}
.

Consequently, we have:

h−1∑
i=0

(
k + i− 1

i

)
(h−i) = h

h−1∑
i=0

(
k + i− 1

i

)
−

h−1∑
i=0

i

(
k + i− 1

i

)

= h

h−1∑
i=0

{(
k + i

i

)
−

(
k + i− 1

i− 1

)}
− k

h−1∑
i=0

{(
k + i

i− 1

)
−

(
k + i− 1

i− 2

)}

= h

(
h + k − 1

h− 1

)
− k

(
h + k − 1

h− 2

)

= h

(
h + k − 1

k

)
− k

(
h + k − 1

k + 1

)
,

which leads to the estimate of Theorem 1.1.
In Theorem 1.1, the upper bound of G(A\X) is easily seen to be a polynomial

in h with leading term hk+1

(k+1)!
, thus with degree (k + 1). In this paper, we show

that it is even possible to bound from above G(A\X) by a polynomial in h with
degree constant (3 or 2) but with coefficients depend on a new parameter other
the cardinality of X. By setting

d :=
diam(X)

δ(X)
,

where diam(X) denotes the usual diameter of X and δ(X) := gcd{x−y | x, y ∈
X}, we show that

G(A \X) ≤ h(h + 3)

2
+ d

h(h− 1)(h + 4)

6
(see Theorem 4.1).

Also, by setting
η := min

a,b∈A\X,a 6=b

|a−b|≥diam(X)

|a− b|,

we show that

G(A \X) ≤ η(h2 − 1) + h + 1 (see Theorem 4.3).
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Finally, by setting
µ := min

y∈A\X
diam(X ∪ {y}),

we show that

G(A \X) ≤ hµ(hµ + 3)

2
(see Theorem 4.4).

It must be noted that this last estimate is obtained by an elementary way as
a consequence of Nash’ theorem while the two first estimates are obtained by
applying Kneser’s theorem with some differences with [7].

In practice, when h and k are large enough, it often happens that our es-
timates are better than that of Theorem 1.1. The more interesting corollary is
when X is an arithmetic progression: in this case we have d = k − 1, implying
from our first estimate an improvement of Theorem 1.1.

2 Notations, terminologies and preliminaries

2.1 General notations and elementary properties

(1) If X is a finite set, we let |X | denote the cardinality of X. If in addition
X ⊂ Z and X 6= ∅, we let diam(X) denote the usual diameter of X (that
is diam(X) := maxx,y∈X |x− y|) and we let

δ(X) := gcd{x− y | x, y ∈ X}

(with the convention δ(X) = 1 if |X | = 1).

(2) If B and C are two sets of integers, the notation B ∼ C means that the
symmetric difference B∆C (= (B \C)∪ (C \B)) is finite; namely B and
C differ just by a finite number of elements.

(3) If A1, A2, . . . , An (n ≥ 1) are nonempty subsets of an abelian group, we
write

n∑
i=1

Ai := {a1 + a2 + · · ·+ an | ai ∈ Ai}.

If A1 = A2 = · · · = An 6= Z, it is convenient to write the previous set as
nA1; while nZ stands for the set of the integer multiples of n.

(4) If U = (ui)i∈N is a nondecreasing and non-stationary sequence of integers,
we write, for all m ∈ N, U(m) the number of terms of U not exceeding
m.
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(Stress that if U is increasing, then it is just considered as a subset of Z
having a finite intersection with Z−).
• We call “the lower asymptotic density” of U the quantity defined by

d(U) := lim inf
m→+∞

U(m)

m
∈ [0, +∞].

If U is increasing (so it is a subset of Z having a finite intersection with
Z−), we clearly have d(U) ≤ 1.

(5) If U1, U2, . . . , Un (n ≥ 1) are nondecreasing and non-stationary sequences
of integers, indexed by N, the notation U1 ∨ U2 ∨ · · · ∨ Un (or ∨n

i=1Ui)
represents the aggregate of the elements of U1, . . . , Un; each element being
counted according to its multiplicity.
• It’s clear that for all m ∈ N, we have: (U1∨· · ·∨Un)(m) =

∑n
i=1 Ui(m).

So, it follows that:

d(U1 ∨ · · · ∨ Un) ≥
n∑

i=1

d(Ui).

• Further, if U1, . . . , Un are increasing (so they are simply sets), we clearly
have:

d(U1 ∨ · · · ∨ Un) ≥ d(U1 ∪ · · · ∪ Un).

(6) It is easy to check that if U is a nondecreasing and non-stationary sequence
of integers (indexed by N) and t ∈ Z, then we have:

(U + t)(m) = U(m) + O(1).

(7) If B is a nonempty set of integers and g is a positive integer, we denote B
gZ

the image of B under the canonical surjection Z → Z
gZ . We also denote

B(g) the set of all natural numbers which are congruent modulo g to some
element of B; in other words:

B(g) := (B + gZ) ∩ N.

• We can easily check that if B and C are two nonempty sets of integers
and g is a positive integer, then we have:

(B + C)(g) ∼ B(g) + C.

In particular, if we have B ∼ B(g) then we also have B +C ∼ (B +C)(g).
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2.2 The theorems of Kneser (see [4], Chap 1)

Theorem 2.1 (The first theorem of Kneser)
Let A1, A2, . . . , An (n ≥ 1) be nonempty sets of integers having each one a finite
intersection with Z−. Then either

d

(
n∑

i=1

Ai

)
≥ d

(
n∨

i=1

Ai

)
(I)

or there exists a positive integer g such that

n∑
i=1

Ai ∼
(

n∑
i=1

Ai

)(g)

. (II)

Remarks:
• We call (I) “the first alternative of the first theorem of Kneser” and we call (II)
“the second alternative of the first theorem of Kneser”.
• The relation (II) implies in particular that the set

∑n
i=1 Ai is (starting from

some element) a finite union of arithmetic progressions with common difference
g.

Theorem 2.2 (The second theorem of Kneser)
Let G be a finite abelian group and B and C be two nonempty subsets of G.
Then, there exists a subgroup H of G such that

B + C = B + C + H

and
|B + C | ≥ |B + H |+ |C + H | − |H |.

In the applications, we use the second theorem of Kneser in the form given by the
corollary below. We first need to define the so-called “a subset not degenerate
of an abelian group” and then to give a simple property related to this one.
Definitions:
• If G is an abelian group and B is a subset of G, we say that “B is not degenerate
in G” if we have stabG(B) = {0} (where stabG(B) denotes the stabilizer of B
in G).
• If B is a set of integers and g is a positive integer, we say that “B is not
degenerate modulo g” if B

gZ is not degenerate in Z
gZ .

Proposition 2.3 Let G be an abelian group and B and C be two nonempty
subsets of G such that (B + C) is not degenerate in G. Then also B and C are
not degenerate in G.
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Proof. This is an immediate consequence of the fact that:
stabG(B) + stabG(C) ⊂ stabG(B + C). ¥

Corollary 2.4 Let G be a finite abelian group and B1, . . . , Bn (n ≥ 1) be
nonempty subsets of G such that (B1 + · · ·+ Bn) is not degenerate in G. Then
we have

|B1 + · · ·+ Bn| ≥ |B1|+ · · ·+ |Bn| − n + 1.

Proof. It suffices to show the corollary for n = 2. The general case follows by
a simple induction on n and by using Proposition 2.3. Suppose n = 2. Theorem
2.2 gives a subgroup H of G satisfying the two relations B1 +B2 = B1 +B2 +H
and |B1 + B2| ≥ |B1 + H | + |B2 + H | − |H |. The first one implies H ⊂
stabG(B1 + B2) = {0}, so H = {0}. By replacing this into the second one, we
conclude to |B1 + B2| ≥ |B1|+ |B2| − 1 as required. ¥

The following proposition (which is an easy exercise) makes the connection
between the first and the second theorem of Kneser:

Proposition 2.5 Let B be a nonempty set of integers and g be a positive
integer. The two following assertions are equivalent:

(i) B is not degenerate modulo g

(ii) There is no positive integer m < g such that B(m) = B(g).

Now, let us explain how we use the theorems of Kneser in this paper. We
first get sets Ai = hi(A \ X), i = 0, . . . , n such that ∪n

i=1(Ai + τi) ∼ N and
d(A0) > 0 (where n is a natural number depending on A and X, the hi’s
are positive integers depending only on h and such that h0 ≤ n and the τi’s
are integers). We thus have d(∨n

i=0Ai) > 1, implying that the first alternative
of the first theorem of Kneser cannot hold. Consequently we are in the second
alternative of the first theorem of Kneser, namely there exists a positive integer g
such that

∑n
i=0 Ai ∼ (

∑n
i=0 Ai)

(g). By choosing g minimal to have this property,
we deduce from Proposition 2.5 that the set

∑n
i=0 Ai is not degenerate modulo

g; in other words the set
∑n

i=0
Ai

gZ is not degenerate in the group Z
gZ . It follows

from Proposition 2.3 that also
∑n

i=1
Ai

gZ is not degenerate in Z
gZ . Then by applying

Corollary 2.4 for G = Z
gZ and Bi = Ai

gZ (i = 1, . . . , n), we deduce that
∣∣∣

∑n
i=1 Ai

gZ

∣∣∣ ≥
∑n

i=1

∣∣∣Ai

gZ

∣∣∣−n+1 ≥ g−n+1 (since ∪n
i=1(Ai +τi) ∼ N); so

∣∣∣ (h1+···+hn)(A\X)
gZ

∣∣∣ ≥
g − n + 1. Next, from the nature of the sequence (

∣∣∣ r(A\X)
gZ

∣∣∣)
r∈N

(pointed out

in Lemma 3.3 of the next section) and the hypothesis that A \ X is a basis,
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we derive that
∣∣∣ (h1+···+hn+n)(A\X)

gZ

∣∣∣ = g; hence (h1+···+hn+n)(A\X)
gZ = Z

gZ . We thus

have ((h1 + · · ·+ hn + n)(A \X))(g) ∼ N. But since on the other hand we have
(in view of the elementary properties of §2.1): ((h1 + · · ·+hn +n)(A\X))(g) =
((A0 + · · ·+An)+(n−h0)(A\X))(g) ∼ (A0 + · · ·+An)(g) +(n−h0)(A\X) ∼
A0 + · · ·+An +(n−h0)(A \X) = (h1 + · · ·+hn +n)(A \X), it finally follows
that (h1 + · · ·+ hn + n)(A \X) ∼ N, that is G(A \X) ≤ h1 + · · ·+ hn + n.

In the work of Nash [7], the parameter n depends on h and |X |. Actually,
its dependence in |X | stems from the upper bounds of the cardinalities of the
sets `X (` = 0, . . . , h). In [7], the upper bound used for each |`X | is (|X |+`−1

`

)
,

which is a polynomial in ` with degree (|X | − 1) and then leads to bound from
above G(A \ X) by a polynomial in h with degree (|X | + 1). However, that
estimate of |`X | is very large for many sets X; for example if X is an arithmetic
progression, we simply have |`X | = `|X | − ` + 1 which is linear in ` and (as
we will see it later) allows to estimate G(A \ X) by a polynomial with degree
3 in h. In order to obtain such an estimate for G(A \ X) in the general case,
our idea (see Lemmas 3.1 and 3.2) consists to replace |X | by another parameter
in X (resp. X and A) for which the cardinality of each of the sets `X (resp.
other more complex sets) is bounded above by a linear function in ` (resp. simple
function in h). The upper bounds obtained in this way for G(A \X) are simply
polynomials in h with degrees 3 or 2 and with coefficients linear in the considered
parameters (see Theorems 4.1 and 4.3). On the other hand, it must be noted
that upper bounds for G(A \ X) which are polynomials with degrees 3 or 2 in
h can be directly derived from the theorem of Nash, but in this way we lose the
linearity in the considered parameter (see Theorem 4.4 and Remark 4.5).

3 Lemmas

The two first lemmas which follow constitute the main differences with Nash’
work [7] about the use of Kneser’s theorems. While the third one gives the nature
(in terms of monotony) of some sequences (related to a given finite abelian group)
which also plays a vital part in the proof of our results.

Lemma 3.1 Let X be a nonempty finite set of integers. Then we have:

|X | ≤ diam(X)

δ(X)
+ 1.

In addition, this inequality becomes an equality if and only if X is an arithmetic
progression.
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Proof. The lemma is obvious if |X | = 1. Assume for the following that
|X | ≥ 2 and write X = {x0, x1, . . . , xn} (n ≥ 1), with x0 < x1 < · · · <
xn. Since the positive integers xi − xi−1 (i = 1, . . . , n) are clearly multiples
of δ(X) then we have xi − xi−1 ≥ δ(X) (∀i = 1, . . . , n). It follows that
xn − x0 =

∑n
i=1(xi − xi−1) ≥ nδ(X), which gives n ≤ xn−x0

δ(X)
= diam(X)

δ(X)
. Hence

|X | = n + 1 ≤ diam(X)
δ(X)

+ 1 as required.
Further, the above proof shows well that the inequality of the lemma is reached
if and only if we have xi − xi−1 = δ(X) (∀i = 1, . . . , n) which simply means
that X is an arithmetic progression. The proof is complete. ¥

Lemma 3.2 Let X be a finite nonempty set of integers and B be an infinite
set of integers having a finite intersection with Z−. Define:

η := min
b,b′∈B,b 6=b′

|b−b′ |≥diam(X)

|b− b′|.

Then, for all u, v ∈ N, g ∈ N∗, we have:

(uB + vX)(m) ≤ η.((u + v)B)(m) + O(1)

and ∣∣∣∣
uB + vX

gZ

∣∣∣∣ ≤ η

∣∣∣∣
(u + v)B

gZ

∣∣∣∣.

Proof. Since we have for all τ ∈ Z: (uB + vX + τ)(m) = (uB + vX)(m) +

O(1) (according to the part (6) of §2.1) and
∣∣∣ uB+vX+τ

gZ

∣∣∣ =
∣∣∣ uB+vX

gZ

∣∣∣ (obviously),
then there is no loss of generality in translating B and X by integers. By
translating, if necessary, X, assume that 0 is its smaller element and write X =
{x0, x1, . . . , xn} (n ∈ N), with 0 = x0 < x1 < · · · < xn. Next, let b0, b ∈ B
such that b− b0 = η. By translating, if necessary, B, assume b0 = 0. Then we
have

b = η ≥ diam(X) = xn.

In this situation, we claim that we have

(uB + vX) ⊂
⋃

0≤τ<η

((u + v)B + τ) (1)

which clearly implies the two inequalities of the lemma. So, it just remains to
show (1). Let N ∈ (uB +vX) and show that there exists a non-negative integer
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τ < η such that N ∈ (u + v)B + τ . Since 0 = b0 = x0 ∈ B ∩X, the fact that
N ∈ (uB + vX) means that N can be written in the form

N = u1b1 + · · ·+ ukbk + v1x1 + · · ·+ vnxn, (2)

with k, u1, . . . , uk, v1, . . . , vn ∈ N, b1, . . . , bk ∈ B, u1 + · · · + uk ≤ u and
v1 + · · ·+ vn ≤ v.
Now, since x1 < x2 < · · · < xn ≤ η, then we have v1x1 + · · · + vnxn ≤
(v1 + · · · + vn)η ≤ vη, which implies that the euclidean division of the non-
negative integer (v1x1 + · · ·+ vnxn) by η yields:

v1x1 + · · ·+ vnxn = tη + τ, (3)

with t, τ ∈ N, t ≤ v and 0 ≤ τ < η. By reporting (3) into (2), we finally obtain

N = u1b1 + · · ·+ ukbk + tη + τ. (4)

Since 0 = b0 ∈ B, b1, . . . , bk, η ∈ B (recall that η = b) and u1 + · · ·+ uk + t ≤
u + v, then the relation (4) is well a writing of N as a sum of (u + v) elements
of B and τ ; in other words N ∈ (u + v)B + τ , giving the desired conclusion.
The proof is complete. ¥

Lemma 3.3 Let G be a finite abelian group and B be a nonempty subset of
G. For all r ∈ N, set ur := |rB|. Then, there exists r0 ∈ N such that:

u0 < u1 < · · · < ur0

and
ur = ur0 (∀r ≥ r0).

Proof. Firstly, since G is finite, the sequence (ur)r is bounded above by |G|.
Secondly, we claim that (ur)r is nondecreasing. Indeed, by fixing b ∈ B, we have
for all r ∈ N: (r + 1)B ⊃ rB + b, hence ur+1 = |(r + 1)B | ≥ |rB + b| =
|rB | = ur. It follows from these two facts that there exists r0 ∈ N such that
ur0 = ur0+1. By taking r0 minimal to have this property, we have:

u0 < u1 < · · · < ur0 = ur0+1.

To conclude the proof of the lemma, it remains to show that

ur = ur0 (∀r ≥ r0). (5)

If b ∈ B is fixed, we claim that for all r ≥ r0, we have:

rB = r0B + (r − r0)b (6)
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which clearly implies (5). So, it remains to show (6). To do this, we argue
by induction on r ≥ r0. For r = r0, the relation (6) is obvious. Next, since
(r0 + 1)B ⊃ r0B + b and |(r0 + 1)B | = ur0+1 = ur0 = |r0B | = |r0B + b|,
then we certainly have (r0 + 1)B = r0B + b, showing that (6) also holds for
r = r0 + 1. Now, let r ≥ r0, assume that (6) holds for r and show that it also
holds for (r + 1). We have:

(r + 1)B = (r0 + 1)B + (r − r0)B

= (r0B + b) + (r − r0)B (since (6) holds for (r0 + 1))
= rB + b

= (r0B + (r − r0)b) + b (from the induction hypothesis)
= r0B + (r + 1− r0)b.

Hence (6) also holds for (r + 1). This finishes this induction and completes the
proof. ¥

4 Main Results

Throughout this section, we fix an additive basis A and a finite nonempty
subset X of A such that A \X is still a basis. We put h := G(A) and we define

d :=
diam(X)

δ(X)
, η := min

a,b∈A\X,a6=b

|a−b|≥diam(X)

|a− b| and µ := min
y∈A\X

diam(X ∪ {y}).

Theorem 4.1 We have G(A \X) ≤ h(h + 3)

2
+ d

h(h− 1)(h + 4)

6
.

Proof. Put B := A \ X, so A = B ∪ X. Then, the fact that A is a basis of
order h amounts to:

hB ∪ ((h− 1)B + X) ∪ ((h− 2)B + 2X) ∪ · · · ∪ (B + (h− 1)X) ∼ N. (7)

(Remark that hX is finite).
Now, since the set of the left-hand side of (7) is clearly contained in a finite union
of translates of hB, then by denoting N a number of translates of hB which are
sufficient to cover it, we have (according to the part (6) of §2.1):

(hB ∪ ((h− 1)B + X) ∪ · · · ∪ (B + (h− 1)X)) (m) ≤ N.(hB)(m) + O(1).
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It follows that:

lim inf
m→+∞

(hB)(m)

m

≥ 1

N
lim inf
m→+∞

1

m
(hB ∪ ((h− 1)B + X) ∪ · · · ∪ (B + (h− 1)X)) (m)

=
1

N
(according to (7)).

Thus
d(hB) ≥ 1

N
> 0. (8)

Now, according to (7), (8) and the part (5) of §2.1, we have:

d (hB ∨ hB ∨ ((h− 1)B + X) ∨ ((h− 2)B + 2X) ∨ · · · ∨ (B + (h− 1)X))

≥ d(hB) + d (hB ∨ ((h− 1)B + X) ∨ · · · ∨ (B + (h− 1)X))

≥ d(hB) + d (hB ∪ ((h− 1)B + X) ∪ · · · ∪ (B + (h− 1)X))

= d(hB) + 1

> 1.

So, we have

lim inf
m→+∞

1

m
{(hB)(m) + (hB)(m) + ((h− 1)B + X)(m)

+ ((h− 2)B + 2X)(m) + · · ·+ (B + (h− 1)X)(m)} > 1.
(9)

Next, according to the part (6) of §2.1 and to Lemma 3.1, each of the quantities
((h− `)B + `X)(m) (` = 1, . . . , h− 1) is bounded above as follows

((h− `)B + `X)(m) ≤ |`X |.((h− `)B)(m) + O(1)

≤
(

diam(`X)

δ(`X)
+ 1

)
.((h− `)B)(m) + O(1)

= (`d + 1).((h− `)B)(m) + O(1)

(10)

(since diam(`X) = `diam(X) and δ(`X) = δ(X)).
Then, by reporting these into (9), we obtain:

lim inf
m→+∞

1

m
{(hB)(m) + (hB)(m) + (d + 1).((h− 1)B)(m)

+ (2d + 1).((h− 2)B)(m) + · · ·+ ((h− 1)d + 1).B(m)} > 1,

which amounts to

d


hB ∨

h−1∨

`=0


 ∨

(`d + 1) times

(h− `)B





 > 1. (11)
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This last relation shows well that the first alternative of the first theorem of
Kneser (applied to the set hB with (`d + 1) copies of each of the sets (h− `)B,
` = 0, 1, . . . , h − 1) cannot hold. We are thus in the second alternative of the
first theorem of Kneser; that is there exists a positive integer g such that

(
h +

h−1∑

`=0

(`d + 1)(h− `)

)
B ∼

((
h +

h−1∑

`=0

(`d + 1)(h− `)

)
B

)(g)

. (12)

Let’s take g minimal in (12). This implies from Proposition 2.5 that the set
(h+

∑h−1
`=0 (`d+1)(h− `))B is not degenerate modulo g; in other words, the set

(h+
∑h−1

`=0 (`d+1)(h−`)) B
gZ is not degenerate in Z

gZ . It follows from Proposition
2.3 that also the set (

∑h−1
`=0 (`d + 1)(h − `)) B

gZ is not degenerate in Z
gZ . Then,

from Corollary 2.4, we have
∣∣∣∣∣

(
h−1∑

`=0

(`d + 1)(h− `)

)
B

gZ

∣∣∣∣∣ =

∣∣∣∣∣∣

h−1∑

`=0

∑

(`d + 1) times

(h− `)B

gZ

∣∣∣∣∣∣

≥
h−1∑

`=0

(`d + 1)

∣∣∣∣
(h− `)B

gZ

∣∣∣∣−
h−1∑

`=0

(`d + 1) + 1. (13)

Now, let’s bound from below the sum
∑h−1

`=0 (`d + 1)
∣∣∣ (h−`)B

gZ

∣∣∣. We have for all
` ∈ {0, 1, . . . , h− 1}:

(`d + 1)

∣∣∣∣
(h− `)B

gZ

∣∣∣∣ =

(
diam(`X)

δ(`X)
+ 1

) ∣∣∣∣
(h− `)B

gZ

∣∣∣∣

≥ |`X |.
∣∣∣∣
(h− `)B

gZ

∣∣∣∣ (according to Lemma 3.1)

≥
∣∣∣∣
`X

gZ

∣∣∣∣.
∣∣∣∣
(h− `)B

gZ

∣∣∣∣

≥
∣∣∣∣
(h− `)B + `X

gZ

∣∣∣∣;

hence

h−1∑

`=0

(`d + 1)

∣∣∣∣
(h− `)B

gZ

∣∣∣∣ ≥
h−1∑

`=0

∣∣∣∣
(h− `)B + `X

gZ

∣∣∣∣

≥
∣∣∣∣
hB ∪ ((h− 1)B + X) ∪ · · · ∪ (B + (h− 1)X)

gZ

∣∣∣∣
= g (according to (7)).
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By reporting this into (13), we have
∣∣∣∣∣

(
h−1∑

`=0

(`d + 1)(h− `)

)
B

gZ

∣∣∣∣∣ ≥ g −
h−1∑

`=0

(`d + 1) + 1. (14)

Now, from Lemma 3.3, we know that the sequence of natural numbers (
∣∣∣r B

gZ

∣∣∣)
r∈N

increases until reaching its maximal value which it then continues to take indef-
initely. In addition, because G(B)B ∼ N, we have

∣∣∣G(B) B
gZ

∣∣∣ =
∣∣∣ ZgZ

∣∣∣ = g,
showing that g is the maximal value of the same sequence. On the other hand,
if we assume that the finite sequence
(
∣∣∣r B

gZ

∣∣∣)∑h−1
`=0 (`d+1)(h−`)≤r≤∑h−1

`=0 (`d+1)(h−`+1)
is increasing, we would have (accord-

ing to (14)): ∣∣∣∣∣

(
h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B

gZ

∣∣∣∣∣ ≥ g + 1

which is impossible. Consequently, the sequence (
∣∣∣r B

gZ

∣∣∣)
r∈N

becomes constant

(equal to g) before its term of order r =
∑h−1

`=0 (`d+1)(h− `+1). In particular,
we have ∣∣∣∣∣

(
h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B

gZ

∣∣∣∣∣ = g

and then (
h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B

gZ
=
Z
gZ

,

implying that ((
h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B

)(g)

= N. (15)

But on the other hand, since
∑h−1

`=0 (`d+1)(h−`+1) ≥ h+
∑h−1

`=0 (`d+1)(h−`),
we have (according to the relation (12) and the property of the part (7) of §2.1):

(
h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B ∼

((
h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B

)(g)

. (16)

By comparing (15) and (16), we finally deduce that
(

h−1∑

`=0

(`d + 1)(h− ` + 1)

)
B ∼ N,

14



which gives

G(B) ≤
h−1∑

`=0

(`d + 1)(h− ` + 1) =
h(h + 3)

2
+ d

h(h− 1)(h + 4)

6

(since
∑h−1

`=0 ` = h(h−1)
2

and
∑h−1

`=0 `2 = h(h−1)(2h−1)
6

).
The theorem is proved. ¥

Corollary 4.2 If in addition X is an arithmetic progression, then we have:

G(A \X) ≤ h(h + 3)

2
+ (|X | − 1)

h(h− 1)(h + 4)

6
.

Proof. By Lemma 3.1, we have |X | = diam(X)
δ(X)

+ 1 = d + 1, hence d = |X | − 1.
The corollary then follows at once from Theorem 4.1. ¥

Theorem 4.3 We have G(A \X) ≤ η(h2 − 1) + h + 1.

Proof. We proceed as in the proof of Theorem 4.1 with some differences; so
we only detail these differences. Putting B := A \ X, we repeat the proof of
Theorem 4.1 until the relation (9). After that, using Lemma 3.2, we bound from
above each of the quantities ((h− `)B + `X)(m) (` = 1, . . . , h− 1) by

((h− `)B + `X)(m) ≤ η.(hB)(m) + O(1). (10′)

Then, by reporting these into (9), we obtain

d


 ∨

(η(h− 1) + 2) times

(hB)


 > 1, (11′)

which shows well that the first alternative of the first theorem of Kneser (applied
to (η(h−1)+2) copies of the set hB) cannot hold. Consequently, we are in the
second alternative of the first theorem of Kneser, that is there exists a positive
integer g such that

(η(h− 1) + 2)hB ∼ ((η(h− 1) + 2)hB)(g) . (12′)

Let’s take g minimal in (12′). Then, Propositions 2.5 and 2.3 imply that the set
(η(h− 1) + 1)h B

gZ is non degenerate in Z
gZ . It follows from Corollary 2.4 that we

have:

15



∣∣∣∣(η(h− 1) + 1)h
B

gZ

∣∣∣∣ =

∣∣∣∣∣∣
∑

(η(h− 1) + 1) times

hB

gZ

∣∣∣∣∣∣

≥ (η(h− 1) + 1)

∣∣∣∣
hB

gZ

∣∣∣∣− η(h− 1). (13′)

Next, using the second inequality of Lemma 3.2, we have

(η(h− 1) + 1)

∣∣∣∣
hB

gZ

∣∣∣∣ =
h−1∑

`=1

η.

∣∣∣∣
((h− `) + `)B

gZ

∣∣∣∣ +

∣∣∣∣
hB

gZ

∣∣∣∣

≥
h−1∑

`=1

∣∣∣∣
(h− `)B + `X

gZ

∣∣∣∣ +

∣∣∣∣
hB

gZ

∣∣∣∣

≥
∣∣∣∣∣
h−1⋃

`=0

((h− `)B + `X)

gZ

∣∣∣∣∣
= g (according to (7)).

By reporting this into (13′), we have
∣∣∣∣(η(h− 1) + 1)h

B

gZ

∣∣∣∣ ≥ g − η(h− 1). (14′)

It follows from Lemma 3.3 (as we applied it in the proof of Theorem 4.1) that
the sequence (

∣∣∣r B
gZ

∣∣∣)
r∈N

is stationary in g before its term of order r = (η(h −
1) + 1)(h + 1). In particular, we have

∣∣∣(η(h− 1) + 1)(h + 1) B
gZ

∣∣∣ = g; hence

(η(h− 1) + 1)(h + 1) B
gZ = Z

gZ , implying that

((η(h− 1) + 1)(h + 1)B)(g) ∼ N. (15′)

But on the other hand, since η ≥ 1, we have (η(h − 1) + 1)(h + 1) ≥ (η(h −
1) + 2)h, which implies (according to the relation (12′) and the property of the
part (7) of §2.1) that

(η(h− 1) + 1)(h + 1)B ∼ ((η(h− 1) + 1)(h + 1)B)(g) . (16′)

By comparing (15′) and (16′), we finally deduce that

(η(h− 1) + 1)(h + 1)B ∼ N,

which gives G(B) ≤ (η(h − 1) + 1)(h + 1) = η(h2 − 1) + h + 1, as required.
The theorem is proved. ¥
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Theorem 4.4 We have G(A \X) ≤ hµ(hµ + 3)

2
.

Proof. First, notice that µ ≥ 1 (since X 6= ∅). Notice also that the parameters
h, µ and G(A \X) are still unchanged if we translate the basis A by an integer.
Let y0 ∈ A \X such that µ = diam(X ∪ {y0}); so by translating if necessary A
by (−y0), we can assume (without loss of generality) that y0 = 0. Then putting
X = {x1, . . . , xn} (n ≥ 1) with x1 < x2 < · · · < xn, we have

µ = diam(X ∪ {0}) = max{|x1|, |x2|, . . . , |xn|, xn − x1}. (17)

We are going to show that the set (A\X)∪{±1} is a basis of order ≤ hµ. The
result of the theorem then follows from the particular case ‘k = 1’ of Theorem
1.1 of Nash. We distinguish the three following cases:
1st case. (if x1 ≥ 0)
In this case, the elements of X are all non-negative. Let N be a natural number
large enough that it can be written as a sum of h elements of A; that is

N = a1 + · · ·+ at + α1x1 + · · ·+ αnxn, (18)

with t, α1, . . . , αn ∈ N, a1, . . . , at ∈ A \X and t + α1 + · · ·+ αn = h.
Next, since the non-negative integer (α1x1 + · · · + αnxn) is obviously bounded
above by (α1 + · · · + αn)µ = (h − t)µ ≤ hµ − t, then it is a sum of (hµ − t)
elements of the set {0, 1}. It follows from (18) that N is a sum of hµ elements
of the set (A \X)∪ {0, 1} = (A \X)∪ {1}. This last fact shows well (since N
is an arbitrary sufficiently large integer) that the set (A \X) ∪ {1} is a basis of
order h′ ≤ hµ. Hence
• either 1 ∈ A \X, in which case we have (A \X) = (A \X) ∪ {1} and then
G(A \X) = h′ ≤ hµ ≤ hµ(hµ+3)

2
,

• or 1 6∈ A\X, in which case we have (A\X) = ((A\X)∪{1})\{1}, implying
(according to Theorem 1.1 for k = 1) that G(A \X) ≤ h′(h′+3)

2
≤ hµ(hµ+3)

2
.

So, in this first case, we always have G(A \X) ≤ hµ(hµ+3)
2

as required.
2nd case. (if xn ≤ 0)
In this case, the elements of X are all non-positive. Let N be a natural number
large enough that can be written as a sum of h elements of A; that is

N = a1 + · · ·+ at + α1x1 + · · ·+ αnxn, (19)

with t, α1, . . . , αn ∈ N, a1, . . . , at ∈ A \X and t + α1 + · · ·+ αn = h.
Next, since the non-positive integer (α1x1 + · · · + αnxn) is bounded below by
−(α1 + · · ·+αn)µ = (t−h)µ ≥ t−hµ, then it is a sum of (hµ− t) elements of
the set {0,−1}. It follows from (19) that N is a sum of hµ elements of the set
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(A \X) ∪ {0,−1} = (A \X) ∪ {−1}. This shows well (since N is an arbitrary
sufficiently large integer) that the set (A \X) ∪ {−1} is a basis of order ≤ hµ.
We finally conclude (like in the first case) that G(A\X) ≤ hµ(hµ+3)

2
as required.

3rd case. (if x1 < 0 and xn > 0)
In this case, we have (from (17)) that µ = xn− x1. Let N be a natural number
large enough so that the number (N+hx1) can be written as a sum of h elements
of A; that is

N + hx1 = a1 + · · ·+ at + α1x1 + · · ·+ αnxn, (20)

with t, α1, . . . , αn ∈ N, a1, . . . , at ∈ A \X and t + α1 + · · ·+ αn = h.
From the identity

α1x1 + · · ·+αnxn−hx1 = α2(x2−x1)+α3(x3−x1)+ · · ·+αn(xn−x1)− tx1,

we deduce (since 0 < x2 − x1 < x3 − x1 < · · · < xn − x1 = µ and 0 < −x1 ≤
xn − x1 − 1 = µ− 1) that

0 < α1x1 + · · ·+ αnxn − hx1 ≤ (α2 + · · ·+ αn)µ + t(µ− 1) ≤ hµ− t,

which implies that the integer (α1x1 + · · · + αnxn − hx1) can be written as a
sum of (hµ− t) elements of the set {0, 1}. It follows from (20) that N is a sum
of hµ elements of the set (A \X) ∪ {0, 1} = (A \X) ∪ {1}. This shows that
the set (A \X)∪ {1} is a basis of order ≤ hµ and leads (as in the first case) to
the desired estimate G(A \X) ≤ hµ(hµ+3)

2
. The proof is complete. ¥

Remark 4.5 By using Theorem 1.1 of Nash for k = 1, 2, we can also establish
by an elementary way (like in the above proof of Theorem 4.4) an upper bound
for G(A \X) in function of h and d. Actually, we obtain

G(A \X) ≤ hd(hd + 1)(hd + 5)

6
.

But this estimate is weaker than that of Theorem 4.1 and in addition it is not
linear in d.

Some open questions:

(1) Does there exist an upper bound for G(A\X), depending only on h and d,
which is polynomial in h with degree 2 and linear in d? (This asks about
the improvement of Theorem 4.1).

(2) Does there exist an upper bound for G(A\X), depending only on h and µ,
which is polynomial in h with degree 2 and linear in µ? (This asks about
the improvement of Theorem 4.4).
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