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Abstract

A strictly increasing sequence A of positive integers is said to be primitive if no term

of A divides any other. Erdős showed that the series
∑

a∈A
1

a log a , where A is a primitive

sequence different from {1}, are all convergent and their sums are bounded above by an

absolute constant. Besides, he conjectured that the upper bound of the preceding sums

is reached when A is the sequence of the prime numbers. The purpose of this paper

is to study the Erdős conjecture. In the first part of the paper, we give two significant

conjectures which are equivalent to that of Erdős and in the second one, we study the

series of the form
∑

a∈A
1

a(log a+x) , where x is a fixed non-negative real number and A

is a primitive sequence different from {1}. In particular, we prove that the analogue of

Erdős’s conjecture for these series does not hold, at least for x ≥ 363. At the end of

the paper, we propose a more general conjecture than that of Erdős, which concerns the

preceding series, and we conclude by raising some open questions.

MSC 2010: Primary 11Bxx.
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1 Introduction

Throughout this paper, we let ⌊x⌋ denote the integer part of a real number x and we let CardS

denote the cardinality of a set S. Further, we denote by P = (pn)n≥1 the sequence of the prime

numbers. For a given sequence of positive integers A , we denote by P (A ) the set of the prime

divisors of the terms of A , that is

P (A ) := {p ∈ P| ∃a ∈ A , p|a}.
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1 INTRODUCTION

For a given positive integer n, we denote by Ω(n) the number of prime factors of n counted with

multiplicity. For a given sequence of positive integers A , the quantity defined by d◦(A ) :=

max{Ω(a), a ∈ A } is called the degree of A . Particularly, if Ω(a) is the same for any a ∈ A ,

then A is called an homogeneous sequence.

A sequence A of positive integers is called primitive if it is strictly increasing and satisfies

the property that no term of A divides any other. A particular and interesting class of primitive

sequences is the class of homogeneous sequences. In [2], Erdős proved that for any infinite

primitive sequence A (with A ̸= {1}), the series∑
a∈A

1

a log a

converges and its sum is bounded above by an absolute constant C. In [4], Erdős and Zhang

showed that C ≤ 1.84 and in [1], Clark improved this estimate to C ≤ eγ ≃ 1.78 (where

γ denotes the Euler constant). Furthermore, in [3], Erdős asked if it is true that the sum∑
a∈A

1
a log a

(where A ̸= {1} is a primitive sequence) reaches its maximum value at A = P.

Some years later, Erdős and Zhang [4] conjectured an affirmative answer to the last question

by proposing the following

Conjecture 1 (Erdős):

For any primitive sequence A ̸= {1}, we have:∑
a∈A

1

a log a
≤
∑
p∈P

1

p log p
.

To compare with Clark’s upper bound, we specify that
∑

p∈P
1

p log p
≃ 1.63. In their same paper

[4], Erdős and Zhang showed that the above conjecture is equivalent to the following which

deals with finite sums:

Conjecture 2 (Erdős and Zhang [4]):

For any primitive sequence A ̸= {1} and any positive integer n, we have:∑
a∈A
a≤n

1

a log a
≤
∑
p∈P
p≤n

1

p log p
.

In [9], Zhang proved the Erdős conjecture for a primitive sequence A (A ̸= {1}) satisfying

d◦(A ) ≤ 4 and in [10], he proved it for the particular case of homogeneous sequences and for

some other slightly more complicated primitive sequences. To our knowledge, these are the

only significant results that were obtained in the direction of proving Erdős’s conjecture.

To know more about the primitive sequences, the reader can consult the excellent book

of Halberstam and Roth [5, Chapter 5].

The main purpose of this article is to study Conjecture 1 of Erdős. In the first part, we

just give two significant conjectures which are equivalent to Conjecture 1. In the second part,
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2 TWO CONJECTURES EQUIVALENT TO ERDŐS’S CONJECTURE

we study the series of the form S(A , x) :=
∑

a∈A
1

a(log a+x)
, where A is a primitive sequence

(different from {1}) and x is a non-negative real number. In this context, we can formulate

Conjecture 1 simply by the inequality: supA S(A , 0) ≤ S(P, 0) (where the supremum is taken

over all primitive sequences A ̸= {1}). So, by analogy, we can naturally ask, for a given x ∈ R+,

whether it is true that supA S(A , x) ≤ S(P, x). As a corollary of a more general result, we

show that the last inequality is wrong for any x ≥ x0, where x0 is an effectively calculable

non-negative real number. We show that x0 = 363 is suitable but the determination of the best

value (i.e., the minimal value) of x0 is left as an open problem. Obviously, if x0 = 0 is also

suitable then Erdős’s conjecture is false. We end the paper by proposing a conjecture about the

quantity supA

∑
a∈A

1
a(log a+x)

(where x is a fixed non-negative real number and the supremum

is taken over all primitive sequences A ̸= {1}) which generalizes the Erdős conjecture and then

by raising some open questions.

2 Two conjectures equivalent to Erdős’s conjecture

In this section, we propose two new significant conjectures and we show just after that both

are equivalent to Conjecture 1.

Conjecture 2.1. For any primitive sequence A , with A ̸= {1}, we have:∑
a∈A

1

a log a
≤

∑
p∈P (A )

1

p log p
.

Conjecture 2.2. For any primitive sequence A , with A ̸= {1}, we have:

∑
a∈A

1

a log a
≤

CardA∑
n=1

1

pn log pn

We have the following proposition:

Proposition 2.3. Both Conjectures 2.1 and 2.2 are equivalent to Conjecture 1.

Proof. It is obvious that each of Conjectures 2.1 and 2.2 is stronger than Conjecture 1. So

it remains to show that Conjecture 1 implies Conjecture 2.1 and that Conjecture 1 implies

Conjecture 2.2.

• Let us show that Conjecture 1 implies Conjecture 2.1. Assume Conjecture 1 is true and show

Conjecture 2.1. So, let A ̸= {1} be a primitive sequence. Then, clearly A ′ := A ∪(P \P (A ))

is also a primitive sequence. Thus, according to Conjecture 1 (supposed true), we have:∑
a∈A ′

1

a log a
≤
∑
p∈P

1

p log p
.

But since∑
a∈A ′

1

a log a
=
∑
a∈A

1

a log a
+

∑
p∈P\P (A)

1

p log p
=
∑
a∈A

1

a log a
+
∑
p∈P

1

p log p
−

∑
p∈P (A )

1

p log p
,
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2 TWO CONJECTURES EQUIVALENT TO ERDŐS’S CONJECTURE

we get (after simplifying): ∑
a∈A

1

a log a
≤

∑
p∈P (A )

1

p log p
,

as required by Conjecture 2.1.

• Now, let us show that Conjecture 1 implies Conjecture 2.2. Assume Conjecture 1 is true

and show Conjecture 2.2. So, let A ̸= {1} be a primitive sequence. Because if A is infinite,

Conjecture 2.2 is exactly the same as Conjecture 1, we can suppose that A is finite. Then, to

prove the inequality of Conjecture 2.2, we argue by induction on CardA .

— For CardA = 1: Since A ̸= {1}, we have A = {a1} for some positive integer a1 ≥ 2. So,

we have: ∑
a∈A

1

a log a
=

1

a1 log a1
≤ 1

2 log 2
=

1

p1 log p1
=

CardA∑
n=1

1

pn log pn
,

confirming the inequality of Conjecture 2.2 for this case.

— Let N be a positive integer. Suppose that Conjecture 2.2 is true for any primitive sequence

(̸= {1}) of cardinality N and show that it remains also true for any primitive sequence of

cardinality (N + 1). So, let A = {a1, . . . , aN , aN+1}, with a1 < a2 < · · · < aN < aN+1, be

a primitive sequence of cardinality (N + 1) and let us show the inequality of Conjecture 2.2

for A . To do so, we introduce A ′′ := {a1, . . . , aN}, which is obviously a primitive sequence of

cardinality N , and we distinguish the two following cases:

1st case: (if aN+1 ≥ pN+1)

In this case, we have on the one hand:

1

aN+1 log aN+1

≤ 1

pN+1 log pN+1

(2.1)

and on the other hand, according to the induction hypothesis applied for A ′′:

N∑
n=1

1

an log an
≤

N∑
n=1

1

pn log pn
(2.2)

By adding (2.1) and (2.2), we get

N+1∑
n=1

1

an log an
≤

N+1∑
n=1

1

pn log pn
,

which shows the inequality of Conjecture 2.2 for A .

2nd case: (if aN+1 < pN+1)

In this case, we have a1 < a2 < · · · < aN+1 < pN+1, implying that

P (A ) ⊂ {p1, p2, . . . , pN}.

It follows by applying Conjecture 2.1 for A (which is true by hypothesis, since we have assumed

that Conjecture 1 is true and we have shown above that Conjecture 1 implies Conjecture 2.1)

that
N+1∑
i=1

1

ai log ai
≤

∑
p∈P (A )

1

p log p
≤

N∑
n=1

1

pn log pn
≤

N+1∑
n=1

1

pn log pn
,
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3 STUDY OF RELATED SUMS

showing the inequality of Conjecture 2.2 for A . This achieves this induction and confirms that

Conjecture 1 implies Conjecture 2.2.

The proof of the proposition is complete.

3 Study of the sums
∑

a∈A
1

a(log a+x)

In this section, we study (for a given x ≥ 0) the series
∑

a∈A
1

a(log a+x)
, where A runs on the

set of all primitive sequences different from {1}. Although our first objective is to disprove

(for some x’s) the analogue of the Erdős conjecture related to those sums, we will prove the

following stronger result:

Theorem 3.1. For every λ ≥ 1 and every x ≥ 2310λ
(
log(λ + 2)

)5/2
, there exists a primitive

sequence A ̸= {1} (effectively constructible), satisfying the inequality:∑
a∈A

1

a(log a+ x)
> λ

∑
p∈P

1

p(log p+ x)
.

To prove this theorem, we need effective estimates of the nth prime number pn in terms

of n together with an effective lower bound of the sum
∑

p∈P,p≤x
1
p
(x > 1) in terms of x.

According to [7, Theorem A, items (i) and (iv)], we have:

pn ≥ n log n (∀n ≥ 2) (3.1)

pn ≤ n (log n+ log log n) (∀n ≥ 6) (3.2)

On the other hand, we can check by hand that we have pn ≤ n2 for 2 ≤ n < 6. From this fact,

together with (3.1) and (3.2), it follows that for any n ≥ 2, we have:

log n ≤ log pn ≤ 2 log n (3.3)

Next, according to [8, Estimate (3.19), page 70], we have for any x > 1:∑
p∈P
p≤x

1

p
> log log x (3.4)

Furthermore, we need the two following lemmas:

Lemma 3.2. For any positive real number x and any positive integer k ≥ 2, we have:

∑
n>k

1

pn (log pn + x)
≤

log
(
1 + x

log k

)
x

.

Proof. Let x be a positive real number and k ≥ 2 be an integer. According to (3.1) and (3.3),

we have: ∑
n>k

1

pn(log pn + x)
≤

∑
n>k

1

n log n(log n+ x)

<

∫ +∞

k

dt

t log t(log t+ x)
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3 STUDY OF RELATED SUMS

(since the function t 7→ 1
t log t(log t+x)

decreases on the interval (1,+∞)).

Next, we have:∫ +∞

k

dt

t log t(log t+ x)
=

∫ +∞

log k

du

u(u+ x)
(by setting u = log t)

=
1

x

∫ +∞

log k

(
1

u
− 1

u+ x

)
du

=
1

x

[
log u− log(u+ x)

]+∞

u=log k

=
1

x
log

(
1 +

x

log k

)
.

The inequality of the lemma then follows.

Lemma 3.3. For any positive integer n, we have:

n! ≤ nne1−n
√
n.

Proof. For n = 1, the inequality of the lemma clearly holds. For n ≥ 2, it is an immediate

consequence of the more precise well-known inequality n! ≤ nne−n
√
2πn e1/12n, which can be

found in Problem 1.15 of [6].

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us fix λ ≥ 1. We introduce three positive parameters c, α and β

(independent from λ) which must satisfy the conditions

cα ≥ eβ + log 2 (C1)

β ≥ 5

2
(C2)

Those parameters will be chosen at the end to optimize our result. We must choose c to be

the smallest possible value such that for any x ≥ cλ (log(λ+ 2))5/2, there exists a primitive

sequence A ̸= {1}, satisfying
∑

a∈A
1

a(log a+x)
> λ

∑
p∈P

1
p(log p+x)

. Two other parameters k and

d are considered; they are both positive integers depending on λ. Especially, the choice of d in

terms of λ can be easily understood towards the end of the proof.

Let x ≥ cλ
(
log(λ+ 2)

)5/2
. We define pk as the greatest prime number satisfying pk ≤ eαx. So,

we have:

pk ≤ eαx < pk+1 < 2pk (3.5)

(where the last inequality is a consequence of Bertrand’s postulate). Note that (C1) insures

that k ≥ 2. Hence (using (3.3)):

log pk ≤ αx < log pk + log 2 ≤ 2 log k + log 2 ≤ 3 log k,

that is

log pk ≤ αx < 3 log k (3.6)
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3 STUDY OF RELATED SUMS

Next, set d := ⌊log λ+ 5
2
log log(λ+ 2) + β⌋. By using successively (3.4), Bertrand’s postulate,

(3.5), and the estimate x > 1
α

(
ed + log 2

)
(resulting from (C1)), we get:

k∑
n=1

1

pn
> log log pk > log log

(pk+1

2

)
> log log

(
eαx

2

)
> d,

that is
k∑

n=1

1

pn
> d (3.7)

Then, by using successively (3.6) and (3.7), we get:

k∑
n=1

1

pn(log pn + x)
≥ 1

(1 + α)x

k∑
n=1

1

pn
>

d

(1 + α)x
.

On the other hand, by using successively Lemma 3.2 and (3.6), we get:∑
n>k

1

pn(log pn + x)
≤ 1

x
log

(
1 +

x

log k

)
<

1

x
log

(
1 +

3

α

)
.

By comparing the two last estimates, we obviously deduce that:

k∑
n=1

1

pn(log pn + x)
>

d

(1 + α) log
(
1 + 3

α

)∑
n>k

1

pn(log pn + x)
.

By adding to both sides of this inequality the quantity d

(1+α) log(1+ 3
α)

∑k
n=1

1
pn(log pn+x)

, we deduce

(after simplifying) that:

k∑
n=1

1

pn(log pn + x)
>

d

d+ (1 + α) log
(
1 + 3

α

) +∞∑
n=1

1

pn(log pn + x)
(3.8)

Now, let A be the set of positive integers defined by:

A := {pα1
1 pα2

2 · · · pαk
k | α1, . . . , αk ∈ N, α1 + · · ·+ αk = d} .

Since A is homogeneous (of degree d) then it is a primitive set. For a suitable choice of c, α

and β, we will show that A satisfies the inequality of the theorem. We have:∑
a∈A

1

a
=

∑
α1+···+αk=d

1

pα1
1 pα2

2 · · · pαk
k

≥
∑

α1+···+αk=d

(1/p1)
α1

α1!

(1/p2)
α2

α2!
· · · (1/pk)

αk

αk!

=
1

d!

(
k∑

i=1

1

pi

)d

(according to the multinomial formula)

=
1

d!

(
k∑

i=1

1

pi

)d−1( k∑
i=1

1

pi

)

>
dd−1

d!

k∑
i=1

1

pi
(according to (3.7)),
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3 STUDY OF RELATED SUMS

that is ∑
a∈A

1

a
>

dd−1

d!

k∑
n=1

1

pn
(3.9)

Further, since pdk is obviously the greatest element of A , we have for any a ∈ A : log a ≤
log(pdk) = d log pk ≤ dαx (according to (3.6)), that is

log a ≤ dαx (∀a ∈ A ) (3.10)

By combining the above estimates, we get∑
a∈A

1

a(log a+ x)
≥ 1

(dα + 1)x

∑
a∈A

1

a
(according to (3.10))

>
1

(dα + 1)x
· d

d−1

d!

k∑
n=1

1

pn
(according to (3.9))

>
dd−1

d!(dα + 1)

k∑
n=1

1

pn(log pn + x)

>
dd−1

d!(dα + 1)
· d

d+ (1 + α) log
(
1 + 3

α

) +∞∑
n=1

1

pn(log pn + x)
(according to (3.8))

=
dd

d!
· 1

(dα + 1)
(
d+ (1 + α) log

(
1 + 3

α

)) +∞∑
n=1

1

pn(log pn + x)

Then, using Lemma 3.3, it follows that:∑
a∈A

1

a(log a+ x)
>

ed−1

√
d(dα + 1)

(
d+ (1 + α) log

(
1 + 3

α

)) +∞∑
n=1

1

pn(log pn + x)
(3.11)

But according to the expression of d in terms of λ, we have clearly:

ed−1 > eβ−2λ (log(λ+ 2))5/2 (3.12)

and by using in addition the obvious estimates log λ < log(λ+2), log log(λ+2) ≤ log(λ+2)−1

and the condition (C2), we have:

d < (β + 1) log(λ+ 2),

which implies the following:

√
d <

√
β + 1 (log(λ+ 2))1/2 (3.13)

dα + 1 < ((β + 1)α + 1) log(λ+ 2) (3.14)

d+ (1 + α) log

(
1 +

3

α

)
<

(
β + 1 + (1 + α) log

(
1 +

3

α

))
log(λ+ 2) (3.15)

By inserting all the estimates (3.12), (3.13), (3.14) and (3.15) into (3.11), we finally obtain:

∑
a∈A

1

a(log a+ x)
>

eβ−2λ√
β + 1

(
(β + 1)α + 1

) (
β + 1 + (1 + α) log

(
1 + 3

α

)) +∞∑
n=1

1

pn(log pn + x)

(3.16)
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3 STUDY OF RELATED SUMS

To obtain the required inequality of the theorem, we must choose α and β (with α > 0 and

β ≥ 5
2
) such that:

eβ−2

√
β + 1

(
(β + 1)α + 1

) (
β + 1 + (1 + α) log

(
1 + 3

α

)) ≥ 1 (⋆)

After that, we can take (according to (C1)): c = eβ+log 2
α

. So, to obtain an optimal result, we

should choose α and β so that (⋆) holds and eβ+log 2
α

is the smallest possible. Using Excel’s

solver, we find the solution (α, β) = (0.44516 . . . , 6.93492 . . . ), which gives c ≃ 2309.8 and

concludes this proof.

Remark 3.4. For the more significant case λ = 1, it is possible to improve the result of Theorem

3.1 by ignoring in the preceding proof the parameter β and working directly with d. Doing so,

the optimization problem that we have to solve consists of minimizing the quantity 1
α
(ed+log 2)

under the constraints ed−1
√
d(dα+1)(d+(1+α) log(1+3/α))

≥ 1 and d ∈ Z+. We obtain the following:

Theorem 3.5. For every real number x ≥ 363, there exists a primitive sequence A ̸= {1}
(effectively constructible), satisfying the inequality:∑

a∈A

1

a(log a+ x)
>
∑
p∈P

1

p(log p+ x)
.

Proof. We introduce the positive parameters c, α, d and k such that d and k are integers and

cα ≥ ed + log 2 (C1)
′

We shall choose c to be the smallest possible value such that for any x ≥ c, there exists a

primitive sequence A ̸= {1}, satisfying
∑

a∈A
1

a(log a+x)
>
∑

p∈P
1

p(log p+x)
. By taking k and A

as in the preceding proof of Theorem 3.1 and by reproducing the same arguments of that proof,

we arrive at the inequality:

∑
a∈A

1

a(log a+ x)
>

ed−1

√
d(dα + 1)

(
d+ (1 + α) log

(
1 + 3

α

)) +∞∑
n=1

1

pn(log pn + x)
(3.11)′

To obtain an optimal result, we should choose d and α such that

ed−1

√
d(dα + 1)

(
d+ (1 + α) log

(
1 + 3

α

)) ≥ 1 (⋆)′

and ed+log 2
α

is minimal. Using Excel’s solver, we find the solution (d, α) = (5, 0.41154 . . . ),

which gives ed+log 2
α

≃ 362.313. So, to satisfy (C1)
′, we can take c = 363. This completes the

proof.

For any natural number k, let us define the homogeneous sequence:

Pk :=
{
n ∈ Z+ : Ω(n) = k

}
.

9
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In particular, we have P0 = {1} and P1 = P. According to the proof of Theorem 3.5, a

concrete example of primitive sequence A ̸= {1} which satisfies the inequality
∑

a∈A
1

a(log a+x)
>∑

p∈P
1

p(log p+x)
(for any x sufficiently large) is A = P5. Next, Theorem 3.5 shows that for

x ≥ 363, the sum
∑

a∈A
1

a(log a+x)
(where A runs on the set of all primitive sequences different

from {1}) does not reach its maximum value at A = P. This shows that the analogue of

the Erdős conjecture for the sums
∑

a∈A
1

a(log a+x)
is in general false. So, it is natural to ask,

for a given x ∈ [0,+∞), if the supremum of the preceding sum is attained and, if so, what is

the structure of a maximizing primitive sequence A . A conjectural answer of this question is

proposed by the following conjecture, generalizing the Erdős one while remaining more vague:

Conjecture 3.6. For any non-negative real number x, the sum∑
a∈A

1

a(log a+ x)

(where A runs on the set of all primitive sequences different from {1}) reaches its maximum

value at some primitive sequence of the form Pk (k ≥ 1).

Remark 3.7. According to the result of Zhang [10], showing that Erdős’s conjecture is true for

the particular case of homogeneous sequences, our conjecture 3.6 immediately implies that of

Erdős.

Some other open questions

Let I be the set of the non-negative real numbers x, satisfying the property that

sup
A

∑
a∈A

1

a(log a+ x)
>
∑
p∈P

1

p(log p+ x)
,

where in the left-hand side of this inequality, the supremum is taken over all primitive sequences

A ̸= {1}. Then, Erdős’s conjecture can be reformulated just by saying that 0 ̸∈ I . Further,

Theorem 3.5 shows that I ⊃ [363,+∞). That said, several other informations concerning I

remain unknown; we can ask for example the following questions:

(1) Is I an interval? Is it an open set of R? Is it a closed set of R? (where, in the two last

questions, R is equipped with its usual topology).

(2) Determine the infimum of I (i.e., inf I ).

References

[1] D.A. Clark. An upper bound of
∑

1/(ai log ai) for primitive sequences, Proc. Amer.

Math. Soc, 123 (1995), p. 363-365.

10



REFERENCES REFERENCES
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