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Abstract
In this note, we study the arithmetic function f : Z% — Q% defined by f(2%¢) =
(=% (Vk,¢ € N, £ odd). We show several important properties about this function,
and we use them to obtain some curious results involving the 2-adic valuation. In the
last section of the paper, we generalize those results to any other p-adic valuation.

1 Introduction and notation

The purpose of this paper is to study the arithmetic function f : 7% — Q7 defined by
f(2ke)y =¢'7F  (Vk, 0 € N, ¢ odd).

We have, for example, f(1) =1, f(2) = 1, f(3) = 3, f(12) = 3, f(40) = &, ..., so it is clear
that f(n) is not always an integer. However, we will show in what follows that f satisfies
the property that the product of the f(r) for 1 < r < n is always an integer, and it is a
multiple of all odd prime numbers not exceeding n. Further, we exploit the properties of f
to establish some curious properties concerning the 2-adic valuation. In the last section of
the paper, we give (without proof) the analogous properties for other p-adic valuations.

The study of f requires introducing the two auxiliary arithmetic functions g : Q. — Z7
and h : Z7 — Q7 , defined by:
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Notice that the product in the denominator of the right-hand side of (2) is actually finite,
because g(3;) = 1 for any sufficiently large i. So h is well-defined.
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1.1 Some notation and terminology

Throughout this paper, we let N* denote the set N\ {0} of positive integers. For a given
prime number p, we let v, denote the usual p-adic valuation. We define the odd part of a
positive rational number « as the positive rational number, denoted Odd(«), so that we have
a = 22(®) . Odd(a). Finally, we denote by |.| the integer-part function and we often use in
this paper the following elementary well-known property of that function:

Va,b € N*Vr e R: {%JJ :{%J.

2 Results and proofs

Theorem 1. Let n be a positive integer. Then the product H f(r) is an integer.
r=1

Proof. For a given r € N*, let us write f(r) in terms of h(r). By writing r in the form
r = 2% (k,¢ € N, £ odd), we have by the definition of g:

r r r _ _ k(k=1)

g(§>g<1>g<§) coo= (26710) (28720) x - x (200) = 2 R,

So, it follows that:
r 2kyp k(3—k) k(3—k)
h(r) = = — =2z ("F=2"7 f(r).
" e )
Hence vy (r) (va(r)—3)
fr)=2"""=2""h(r). (3)

Using (3), we get for all n € N* that:

n

[L76) = 25 =252 gy, @

r=1 r=1
By taking the odd part of each side of this last identity, we obtain

n

[ () =0dd (H h(r)) (Vn € N¥), (5)

r=1

So, to confirm the statement of the theorem, it suffices to prove that the product []"_, k()
is an integer for any n € N*. To do so, we lean on the following sample property of g:

J()s(3) 4=l e



Using this, we have

() TIo () T (7

Hence
n
n!
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(Notice that the product in the denominator of the right-hand side of (6) is actually finite

because |3 | = 0 for any sufficiently large 7).

Now, since |5+ [§] + [§] +-- <5+ 5+ 5+ - =n then m is a multiple of
1+ 24 Which s a i !

LQ%J LLL%J Lé ) which is an integer. Consequently [ZE

is an integer, which completes this proof. O

h(r) = L (6)

r=

the multinomial coefficient (

Here is a table of the values of f(n), h(n), [T,<;<, f(i),and [],.,<, h(i). The sequences
[Ticicn f(i) and [T ., h(i) are sequences A185275 and A185021, respectively, in Sloane’s
Encyclopedia of Integer Sequences.

n 1{2](3[4]5]6 ] 7]8 9 10 11 12

f(n) 113151 [7]1 9 1 11 z

h(n) 11213252 [ 7]1 9 2 11 2
[Ticic, JG) [ 111 3] 3 [15| 15 [105] 105 | 945 | 945 | 10395 | 3465
[TicicnP(i) [ 1]2]6]12]60 | 120 | 840 | 840 | 7560 | 15120 | 166320 | 110880

Theorem 2. Let n be a positive integer. Then H f(r) is a multiple of Odd(lem(1,2,...,n)).

r=1

In particular, H f(r) is a multiple of all odd prime numbers not exceeding n.

r=1

Proof. According to the relations (5) and (6) obtained during the proof of Theorem 1, it
suffices to show that W is a multiple of lem(1,2,...,n). Equivalently, it suffices to
24°L4d°Lg 4"

prove that for all prime number p, we have

(i) o g
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where «, is the p-adic valuation of lem(1,2,...,n), that is the greatest power of p not
exceeding n. Let us show (7) for a given arbitrary prime number p. Using Legendre’s
formula (see e.g., [1]), we have

Vp (L%J'L%T"L%J'> B i L%J _ii EZUJ

=1 ]=1 =1
ap n (o] n
- (L_J - bj Z. ) (8)
i1 \LP =1 LeP
Next, for all i € {1,2,...,a,}, we have
oy alel] L alel
Yswl - 2|5 =2y < B
Jj=1 j=1 j=1

But since ([ ;] — S is]) (€ {1,2,...,a,}) is an integer, it follows that:

j=1L21p
n 2l n _
11 >/ ISV

By inserting those last inequalities in (8), we finally obtain

K (L%JH%TSL%J[...) > a,

which confirms (7) and completes this proof. O

Theorem 3. For all positive integers n, we have

where ¢ = 4.01055487 . . ..
In addition, the inequality becomes an equality for n = 1023 = 210 — 1.

Proof. First, we use the relation (6) to prove by induction on n that:

n

Hh(r) < plos2myn 9)

r=1

e For n =1, (9) is clearly true.
e For a given n > 2, suppose that (9) is true for all positive integer < n and let us show that
(9) is also true for n. To do so, we distinguish the two following cases:



15¢ case: (if n is even, that is n = 2m for some m € N*).
In this case, by using (6) and the induction hypothesis, we have

IN

) 2m
mo82 M 42m (since ( ) <4™)
1
< plos: n4n7

as claimed.
27d case: (if n is odd, that is n = 2m + 1 for some m € N*).
By using (6) and the induction hypothesis, we have

[Tre) = e () T

2
S (2m + 1)( m) m10g2 mym
m
logo m+1 (2m+1 . 2m m
< moe 4 (since 2m + 1 < 4m and < 4™)
m

S nlog2 n4n7

as claimed.

The inequality (9) thus holds for all positive integer n. Now, to establish the inequality of
the theorem, we proceed as follows:

— For n < 70000, we simply verify the truth of the inequality in question (by using the
Visual Basic language for example).

— For n > 70000, it is easy to see that n'°&2" < (¢/4)" and by inserting this in (9), the
inequality of the theorem follows.

The proof is complete. O

Now, since any positive integer n satisfies [["_, f(r) < [[._, h(r) (according to (5) and
the fact that [["_, h(r) is an integer), then we immediately derive from Theorem 3 the
following:

Corollary 4. For all positive integers n, we have

where ¢ is the constant given in Theorem 5. O

To improve Corollary 4, we propose the following optimal conjecture which is very prob-
ably true but it seems difficult to prove or disprove it!
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Conjecture 5. For all positive integers n, we have

n

[Tr0) < 4

r=1

Using the Visual Basic language, we have checked the validity of Conjecture 5 up to
n = 100000. Further, by using elementary estimations similar to those used in the proof of
Theorem 3, we can easily show that:

n 1/n n 1/n
A, (H f<r>> = (HhU) =4

which shows in particular that the upper bound of Conjecture 5 is optimal.
Now, by exploiting the properties obtained above for the arithmetic function f, we are
going to establish some curious properties concerning the 2-adic valuation.

Theorem 6. For all positive integers n and all odd prime numbers p, we have

S ) < 3w - {mgnJ |

r=1 r=1 log p

Proof. Let n be a positive integer and p be an odd prime number. Since (according to
Theorem 2), the product [, f(r) is a multiple of the positive integer Odd(lem(1,2,...,n))

whose the p-adic valuation is equal to H‘;i Zj, then we have

i B a logn
: (H f<r>) IR
But by the definition of f, we have for all » > 1:
vp(f(r)) = (1= va(r))up(r).

So, it follows that:

> (- ) > [0,

r=1

which gives the inequality of the theorem. O

Theorem 7. Letn be a positive integer and let ag+a,2' +a92%+- - -+as2° be the representation
of n in the binary system. Then we have

n

Vo(r)(3 — a(r L
S G =) _ >

r=1

In particular, we have for all m € N:

= m.

2m1/2r 3 — va(r
; ()(2 (r))



Proof. By taking the 2-adic valuation in the two hand-sides of the identity (4) and then
using (6), we obtain

n

1/2(7”)(3—V2(7"))_V ~ A n!
2 ‘Q(THJ“)) (i)

r=1

It follows by using Legendre’s formula (see e.g., [1]) that:

;m(r)(gg_W(T)) _ ;% _;;wa
- ;22 ;“_1 buJ

By adding to the last series the telescopic series y -, ((z — 1) [2] — i |5%+]) which is con-
vergent with sum zero, we derive that:

> =S (5] -2 5]

r=1 i=1

But according to the representation of n in the binary system, we have

VlJ QMRJ_ a;, forv=1,2,...,s;
20 2it11 )0, fori > s.

n

Z ve(r)(3 — va(r me

r=1

Hence

as required.
The second part of the theorem is an immediate consequence of the first one. The proof is

finished. L

3 Generalization to the other p-adic valuations

The generalization of the previous results by replacing the 2-adic valuation by a p-adic
valuation (where p is an odd prime) is possible but it doesn’t yield results as interesting
as those concerning the 2-adic valuation. Actually, the particularity of the prime number
p = 2 which have permit us to obtain the previous interesting results is the fact that we have
St =1forp=2.

For the following, let p be an arbitrary prime number. We consider more generally the
arithmetic function f, : N* — Q7 defined by:

fp(pk€> — gl—k
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for any £ € N, ¢ € N*, ¢ non-multiple of p. So we have clearly fo = f. Using the same
method and the same arguments as those used in Section 2, we obtain the followings:

Theorem 8. Let n be a positive integer. Then the product pr(r) 1S an integer.
r=1

For z € Q*, set ,(z) := ap~ @),

Theorem 9. Let n be a positive integer. Then H fp(r) is a multiple of p,(lem(1,2,...,n)).

r=1

In particular, H fp(r) is a multiple of all prime number, different from p, not exceeding n.

r=1
n

In addition, H Ip(r) is a multiple of the rational number gap(n!i%f).

r=1

Remark 10. For p # 2, because the rational number !5 cannot bounded from above by
¢" (c an absolute constant) then according to the second part of Theorem 9, there is no
inequality of the type [[I_, f,(r) < ¢" (c an absolute constant). So, Corollary 4 cannot be
generalized to the arithmetic functions f, (p # 2).

Theorem 11. For all positive integers n and all prime numbers q # p, we have

n

Zup(r)vq(r) < :Zl’/q(r) B LlognJ |

r=1 IOg q

We have also
n n

> < i -3 |2 ).

r=1 r=1 =1

Theorem 12. Let n be a positive integer and let ag + aip' + asp? + - - - + azp® be the repre-
sentation of n in the base-p system. Then we have

n

vp(r) (3 — vp(r - —2p 1+ (i—-1)(p—1
S 23l ”):Z{p(p )P 1+ (= 1)(p >}

_ 2
2 — (p—1)

r=1

In particular, we have for all m € N:

v (NB=1(r)  plp—2)pm 414 (m—1D)(p—1)
Z_; 2 (p—1)2 '

<3
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