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ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS
THAT OCCUR IN SOME TYPES OF INTERVALS

B. FARHI

ABSTRACT. In this paper, we show that for any integer a > 2, each of the intervals

[a*,ak+1) (k € N) contains either “ggggJ or “ggg—‘ Fibonacci numbers. In addi-

tion, the density (in N) of the set of all natural numbers k for which the interval

k ak*1) contains exactly US%J Fibonacci numbers is equal to (1 - <ll§§$>>

and the density of the set of all natural numbers k for which the interval [a*, a**1)

[a

contains exactly “;’ggg-‘ Fibonacci numbers is equal to <11§§; >

1. INTRODUCTION AND THE MAIN RESULT

Throughout this paper, if z is a real number, we let |z, [z], and (x), respectively
denote the greatest integer < x, the least integer > x, and the fractional part of x.
Furthermore, we let Card X denote the cardinal of a given finite set X. Finally,
for any subset A of N, we define the density of A as the following limit (if it exists):
. Card(AN|[1,N])
d(A) T N1—1>r-Ii-loo N '

It is clear that if d(A) exists, then d(A) € [0,1].

The Fibonacci sequence (F},),,cy is defined by Fy =0, F; =1, and for alln € N

(1.1) Fpio=Fp+ Fpi

A Fibonacci number is simply a term of the Fibonacci sequence. In this paper, we
denote by % the set of the all Fibonacci numbers, that is,

F:={F, , neN}=1{0,1,1,2,3,5,8,13,21,34,55,89,144, ... }.

First, let us recall some important identities that will be useful in our proofs in
Section 2. The Fibonacci sequence can be extended to the negative index n by

rewriting the recurrence relation (1.1) as F,, = F,,12 — Fy,+1. By induction, we
easily show that for all n € Z, we have
(1.2) F_,=(-1)""F,
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(see [2, Chapter 5] for the details). A closed formula of F,, (n € Z) in terms of n
is known and given by

1 —n
1.3 I3 ::4—7(®”-¢ ),
(1.3) "=
where @ := 1+T\/5 is the golden ratio and ® := 1_2‘/5 = —1. Formula (1.3) is

called “the Binet Formula” and there are many ways to prove it (see, e.g., [1,
Chapter 8] or [2, Chapter 5]). Note that the real numbers ® and ® are the roots
of the quadratic equation

2 =z+1.
More generally, we can show by induction (see, e.g., [1, Chapter 8]) that for
x € {®, P} and for all n € Z, we have
(1.4) 2" =F,x + F,_1.

As remarked by Honsberger in [1, Chapter 8], Binet’s formula (1.3) immediately
follows from the last formula (1.4). On the other hand, the Fibonacci sequence
satisfies the following important formula

(1.5) Foim=F.Fpni1+ Fo1Fy, (for all n,m € Z),

which we call “the addition formula”. A nice and easily proof of (1.5) uses the
formula (1.4). We can also prove (1.5) by using matrix calculations as in [1,
Chapter 8.

As usual, we associate the Lucas sequence (L)
and for all n € Z,

(16) L7L+2 =Ly, + L7L+1

with the Fibonacci sequence (F7,),, ;. There are many connections and likenesses
between the Fibonacci sequence and the Lucas sequence. For example, we have
two following formulas (see [1, Chapter 8] or [2, Chapter 5]):

(1.7) Ln =Ip-1+ Fn+17
(1.8) L,=%"+3",

nez, defined by: Lo =2, L1 =1

which hold for any n € Z. For many other connections between the Fibonacci and
the Lucas numbers, the reader can consult two references cited just above.

Fibonacci’s sequence plays a very important role in theoretical and applied
mathematics. During the last two centuries, arithmetic, algebraic, and analytic
properties of the Fibonacci sequence have been investigated by several authors.
One of those properties concerns the occurrence of the Fibonacci numbers in
some types of intervals. For example, the French mathematician Gabriel Lamé
(1795-1870) proved that there must be either four or five Fibonacci numbers with
the same number of digits (see [3, page 29]). A generalization of this result con-
sists in determining the possible quantities of Fibonacci numbers that belong to
an interval of the form [a*,a**!), where a and k are positive integers. In this
direction, Honsberger [1, Chapter 8] proved the following theorem.
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Theorem (Honsberger [1]). Let a and k be any two positive integers. Then
between the consecutive powers a* and a*t1 there can never occur more than a
Fibonacci numbers.

However, Honsberger’s theorem gives only an upper bound for the quantity
of the Fibonacci numbers in question. Furthermore, it is not optimal because
for a = 10, it gives a result that is weaker than Lamé’s one. In this paper, we
obtain the optimal generalization of Lamé’s result with precisions concerning some
densities. Our main result is the following theorem.

Theorem 1.1. Let a > 2 be an integer. Then, any interval of the form

[a*,ak*1) (k € N) contains either VOWJ or Pog“—‘ Fibonacci numbers.

log @ log @
In addition, the density (in N) of the set of all natural numbers k for which the in-
terval [a®,a*TY) contains evactly llgg 3| Fibonacci numbers is equal to

(1 - <11§ggg>) and the density of the set of all natural numbers k for which the

log a
log @

—‘ Fibonacci numbers is equal to <1Oga >

~ koo k1 '
interval [a®,a" ) contains exactly { e

2. THE PROOF OF THE MAIN RESULT

The proof of our main result needs the following lemmas.

Lemma 2.1. For all positive integers n, we have

In addition, the left-hand side of this double inequality is strict whenever n > 3
and its right-hand side is strict whenever n > 2.

Proof. We argue by induction on n. The double inequality of the lemma is
clearly true for n = 1 and for n = 2. For a given integer n > 3, suppose that the
double inequality of the lemma holds for any positive integers m < n. So it holds
in particular, for m = n — 1 and for m = n — 2, that is

PV < F,_ < P2 and PV <E, o < ®" 3,
By adding corresponding sides of the two last double inequalities and by taking
account that "3 + "% = " 4(® + 1) = ®" 492 = &2 (since ® + 1 = ®?),
®"=2 4 "3 = d"~1 (for the same reason), and F,,_1 + F,,_» = F),, we get
(I)n72 S Fn S (I)nfl7
which is the double inequality of the lemma for the integer n. This achieves the

induction and confirms the validity of the double inequality of the lemma for any
positive integer n. We can show the second part of the lemma by the same way. O

Lemma 2.2. For any integer a > 2, the real number llggg is irrational.

log a
log ®

where r and s are positive

Proof. Let a > 2 be an integer. We argue by contradiction. Suppose that

loga
log @

loga __ r
log® ~— s

is rational. Since > 0, we can write
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integers. This gives ®” = a” and shows that ®" € Z. Then, since =L, — "
(according to (1.8)), it follows that ® € Z. But on the other hand, we have
’67- = ‘6|T € (0,1) (since |®| € (0,1)). We thus have a contradiction which

confirms that the real number 113% is irrational. O

Lemma 2.3. When the positive real number x tends to infinity, then we have
log x
log®"
Proof. For a given x > 1, let F# N[l,z) = {Fy, F3,...,F,41} for a positive
integer h. So we have Card(%# N [1,z)) = h and
Fry1 <2 < Fhyo,

Card (F N[l,x)) ~

which gives

log Fp,+1 log z < log Fp, 42
hlog ® hlog® — hlog® °
But because we have (according to the Binet formula (1.3))

log Fry1 lim log Fryo

i — o h¥2
h—+oo hlog®  ho+oo hlog® ’
it follows that limp_, | o0 hlloo% = 1. Hence h ~ o llsgé, as required. O

Lemma 2.4. For any n € Z, we have
Fyy1 > F2.
Proof. Let n € Z. According to the addition formula (1.5), we have
Fono1=Fpyn1y=F:+F;_, > F..
The lemma is proved. (]
Lemma 2.5. For all n,m € 7Z, we have
Foym = FoLm + (—1)m+1Fn,m.
Proof. Let n,m € Z. According to the addition formula (1.5), we have
(2.1) Froim =FnFmi1 + FroiFy
and
Fom=F,F i1+ Fy 1 F = (-1)"F,Fp_1+ (-1)""'F, |F,,
(according to (1.2)). Hence
(2.2) ()" Fypem = FpFo1 — Fp1Fp.
By adding corresponding sides of (2.1) and (2.2), we get
Frym + (_l)m n—m = Iy (Fm+1 + Fm—l) = F,Ln,
(according to (1.7)). Hence
Foim=FyLpy + (1) E,_,,,

as required. O
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Lemma 2.6 (the key lemma). For all n,m € N, satisfying (n,m) # (0,1) and
n>m — 1, we have

Proof. The double inequality of the lemma is trivial for mm = 0. For what
follows, assume that m > 1. We distinguish two cases according to the parity
of m.

15t case: (if m is even). In this case, we have & € (0,1) (since ® € (—1,0) and
m is even). Using (1.8), it follows that

—=m

" =L, —® € (Ly—1,Ln).
Consequently, we have
[®™| =L, —1 and [®™] = L.
So, for this case, we have to show that
F,(Lm—1) < Froym < FLp,.

Let us show the last double inequality. According to Lemma 2.5, we have
Fopm = FuLp + (1) Fy
(2.3) =F,L,, — Fp_m (because m is even)
=F, (L — 1)+ (Fy — Freim) -
Next, since n — m > —1 (because n > m — 1 by hypothesis), then we have
Fnm 20,

and since n > n —m > —1 and (n,n —m) # (0,—1) (because (n,m) # (0,1) by
hypothesis), then we have F,, > F,,_,,, that is,

F,—Fo_m >0.
Therefore, the second and the third equalities of (2.3) show that

as required.

274 case: (if m is odd). In this case, we have @ € (—1,0) (because & € (—1,0)
and m is odd). Using (1.8), it follows that

€ (L, Lm + 1).

—=m

" =L, —®
Consequently, we have
|®™] = L, and [®@™] = Ly, + 1.
So, for this case, we have to show that
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Let us show this last double inequality. According to Lemma 2.5, we have
Fogm = FuLm + (=1)" " Fy
(2.4) =F,Ly+ Fp_p (because m is odd)
=F,(Ln+1)—(Fy— Foem) .
For the same reasons as in the first case, we have
F,_,>0 and F,—F,_,,>0.
According to the second and the third equalities of (2.4), it follows that
Fo.Ly, < Foim <F, (L, +1),

as required. This completes the proof of the lemma. O
We are now ready to prove our main result.

Proof of Theorem 1.1. Let a > 2 be a fixed integer. For simplification, we put

for any natural number &, Iy, := [a¥,a**1) and £ := “gggJ . Since the real number
llggg is not an integer (according to Lemma 2.2), we deduce that £+ 1 = “ggg—‘

e First, let us show the first part of the theorem.
— For k =0, we have Iy = Iy = [1,a). According to the definition of £, we have

Pl < q < L,

Hence

- ¢
(2.5) |_| [, o) cIp | | [, @)

i=0 =0
(recall that the symbol U denotes a disjoint union). According to Lemma 2.1,
since each interval [®%, ®'T1) (i € N) contains a unique Fibonacci number, it fol-
lows from (2.5) that the interval Iy contains at least ¢ Fibonacci numbers and at
most (£ + 1) Fibonacci numbers, as required.
— For the following, we assume k > 1. Let ¢ denote the number of the Fibonacci
numbers belonging to I and let F., F.y1,...,F.y;—1 (r > 2) denote those Fi-
bonacci numbers. We shall determine i. By definition, we have

(2.6) Fo1<d"<F. <F 1 <---<Fi1<d™ <F.

which implies that

Fryiog  afft
(2'7) Fr ak =a
and
k+1
(2.8) Frvi S0 _
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On the other hand, we have

Fryioq < abt? (according to (2.6))
< q?k (since k > 1)
< F? (according to (2.6))
< Fyq (according to Lemma 2.4).

Hence Fyi—1 < Fyr—1. Because the sequence (F,),.y is non-decreasing, we
deduce that r +¢ — 1 < 2r — 1, which gives r > ¢, that is, » > ¢+ 1. This then
allows us to apply Lemma 2.6 for each of the two couples (n,m) = (r,i — 1) and
(n,m) = (r—1,i4 1) to obtain

0] £ T < o]
and
Lq)i—HJ < h < "(I)z'-‘rl‘l.
Fr—l

By comparing these last double inequalities with (2.7) and (2.8), we deduce that
(@7 <a< [®F].
But since a is an integer, it follows that
P < < @
which gives : :
1§§$—1<i<%+1.
Finally, since 4 is an integer, we conclude that

< {les] - [eal} = e+,

e Now, let us show the second part of the theorem which deals with densities
of subsets of the natural numbers. For a given positive integer N, the intervals
I == [a*,a**1) (0 < k < N—1) clearly form a partition of the interval [1,aV). Let
Ap denote the number of the intervals I, (0 < k < N —1), each of them contains
exactly ¢ Fibonacci numbers and let By denote the number of the intervals Iy
(0 < k < N —1), each of them contains exactly (¢ + 1) Fibonacci numbers.
According to the first part of the theorem (shown above), we have

Ay +By =N

as required.

and

log(a") loga

(AN + ({+1)By = Card (Z N [1,aN)) ~ oo og® ~ log®

(where the last estimate follows from Lemma 2.3).
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So, the couple (A, By) is a solution of the following linear system of two equations

AN+BN:N,

(AN + ({+1)By =

By solving this system, we get

1 1 1
AN:<£+1— Og“)N+o(N): {Og“JH_ Oga)N—i—o(N)
log ® g

(
(

By = (log“ —£>N+0(N) = (log“ - Vog“D N + o(N)
< |

and
log ® log ® log ®
loga
= N N
10g<I>> o)
Hence
i Ay 1 loga q . By loga
im —=1- an im = .
N—+oo N log ® N—+oo N log ®
These two limits respectively represent the density of the set of all k € N for
which the interval I contains exactly ¢ = UgggJ Fibonacci numbers and the
density of the set of all k¥ € N for which I contains exactly (¢ + 1) = “ggg—‘
Fibonacci numbers. This confirms the second part of the theorem and completes
this proof. O

3. NUMERICAL EXAMPLES AND REMARKS

In this section, we apply our main result for some particular values of a to deduce
some interesting results.
e For a = 10, the first part of Theorem 1.1 shows that any interval of the form

[10%,10%*+1) (k € N) contains either Fog 10J = 4 or | k= 10—‘ = 5 Fibonacci

log @ log @
numbers. We thus find again Lamé’s result cited in Section 1. The second
part of Theorem 1.1 shows that the set of all positive integers k for which
there are exactly 4 Fibonacci numbers with £ digits and the set of all positive
integers k for which there are exactly 5 Fibonacci numbers with k digits have

the density 1 — ({240 =0.215... and ({&40) = 0.784. ., respectively.

lo

e For a = 7, Theorem 1.1 shows that any interval of the form [7%, 7*+1) (k € N)
contains either 4 or 5 Fibonacci numbers. Besides, the density of the set of all
k € N for which the interval [7% 751 contains exactly 4 Fibonacci numbers
is about 0.956. So, there is more than a 95% chance that an arbitrary interval
of the form [7%, 7*+1) contains exactly 4 Fibonacci numbers.
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Remark 1. The second example above shows that for a = 7, the intervals
[a¥,ak*1) (k € N) contain almost all (i.e., with a large percentage) the same
quantity of Fibonacci numbers. Interestingly, we remark that 7 = L4 is a Lucas
number. Actually, it is not difficult to show that the last property is satisfied for
any other Lucas number a > 7. Indeed, if a is a Lucas number (say a = L,, for
some n > 4), then a is close to ®" (since L, = ®" + &, according to (1.8)),

and then llggg is close to n. It follows that one of the two densities occurring in

Theorem 1.1 (that is <11§%) and 1 — <11§§$>) is almost zero, which confirms that

the intervals [a*,a**1) (k € N) contain almost all same quantity of Fibonacci
numbers. Taking, for example, a = L1; = 199, we find that more than 99.99% of
the intervals [199% 199%+1) (k € N) contain exactly 11 Fibonacci numbers. The
few remaining of these intervals contain only 10 Fibonacci numbers.

Remark 2. Let a > 2 be a fixed integer. For an arbitrary natural number k, let
X denote the random variable that counts the number of the Fibonacci numbers
belonging to the interval [a*,a**!). Theorem 1.1 shows that X takes only two
possible values Lllgg ¢ and Hgg ¢ | with the probabilities (1 — <1lcc))§ $)) and (1135 )
respectively. Using this, the calculations give

E(X)

_ loga
~ log ®

loga loga
)= (e (1~ (ga))
o(X) \/ log ® log ®
where E(X) and o(X), respectively, denote the mathematical expectation and the
standard deviation of X.
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