La méthode matricielle de Blankinship pour déterminer une solution particulière d'une équation diophantienne linéaire

BAKIR FARHI

Département de Mathématiques
Université de Béjaia
Algérie

bakir.farhi@gmail.com

http://farhi.bakir.free.fr/

Béjaia, le 14 avril 2017

1 Introduction

Soit à résoudre dans \mathbb{Z}^2 une équation diophantienne linéaire :

$$ax + by = c \tag{*}$$

(avec $a, b \in \mathbb{Z}^*$ et $c \in \mathbb{Z}$).

On sait que la condition nécessaire et suffisante pour que (\star) possède des solutions est $\ll \operatorname{pgcd}(a,b)$ divise $c\gg$. On sait aussi que, sous cette condition, une solution particulière de l'équation (\star) permet de déterminer immédiatement sa solution générale (en utilisant le lemme de Gauss). Lorsque les entiers a et b sont "petits" en valeurs absolues, une solution particulière de (\star) peut être trouvée de tête (i.e., par tâtonnement); mais lorsque a et b sont assez grands, une méthode de recherche d'une telle solution s'impose. En fait, l'algorithme d'Euclide (calculant $\operatorname{pgcd}(a,b)$) permet de déterminer une solution particulière de (\star) (on écrit chaque reste des divisions de l'algorithme en fonction du divisant et du diviseur de la même division en commençant de la dernière division à la première). La méthode de Blankinship [1] permet de réaliser le même objectif mais d'une façon plus apaisante en utilisant les matrices de $\mathscr{M}_{2\times 3}(\mathbb{Z})$.

2 Description de la méthode de Blankinship

Supposons que l'équation (\star) possède des solutions dans \mathbb{Z}^2 , c'est-à-dire qu'on a $\operatorname{pgcd}(a,b)/c$. La méthode de Blankinship pour déterminer une solution particulière de (\star) consiste en ce qui suit :

On démarre de la matrice :

$$A_0 := \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}$$

et on lui applique une succession de transformations matricielles où chaque transformation consiste à remplacer une des deux lignes L_i (i=1 ou 2) par un vecteur ligne de la forme $L_i + kL_j$ (avec $k \in \mathbb{Z}$), où $j \in \{1,2\}$ et $j \neq i$. Par exemple, la ligne L_1 peut être remplacée par $(L_1 - 3L_2)$; de même, la ligne L_2 peut être remplacée par $(L_2 + 5L_1)$, etc. Le but de ces transformations est de réduire (en valeurs absolues) les entiers a et b. Ainsi, l'entier k qu'on utilise lorsqu'on arrive à une matrice

$$A_i = \begin{pmatrix} * & * & \alpha \\ * & * & \beta \end{pmatrix},$$

en supposant $\alpha > \beta > 0$ par exemple, est simplement égale à l'opposé du résultat de la division euclidienne de α sur β ; de sorte que $(\alpha + k\beta)$ soit égale au reste de la division euclidienne de α sur β et soit donc strictement plus petit que β . On poursuit ces transformations matricielles jusqu'à l'obtention d'une matrice dont l'un des coefficients de la troisième colonne vaut c ou divise c (ceci est toujours possible d'après l'algorithme d'Euclide du calcul de pgcd(a,b)). La dernière matrice qu'on obtient nous fournira alors une solution particulière de (\star) , comme le précise la proposition suivante et le corollaire qui la suit :

Proposition 1. Soient $a, b \in \mathbb{Z}^*$. En partant de la matrice $A_0 := \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}$, toute matrice A intervenant dans l'algorithme de Blankinship vérifie :

$$A \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Démonstration. Désignons par A_i $(i \in \mathbb{N})$ la $i^{\text{ème}}$ matrice intervenant dans l'algorithme de Blankinship. Nous montrons alors le résultat de la proposition par récurrence sur i.

• Pour i = 0: on a

$$A_0 \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

comme il fallait le prouver.

• Soit $i \in \mathbb{N}$. Supposons que $A_i \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et montrons que $A_{i+1} \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. D'après

la description de l'algorithme de Blankinship, la matrice A_{i+1} s'obtient à partir de la matrice A_i de l'une des deux façons suivantes :

— Ou bien, on remplace la 1^{ère} ligne L_1 de A_i par $(L_1 + kL_2)$, avec $k \in \mathbb{Z}$ et L_2 est la 2^{nde} ligne de A_i . Ce qui revient à écrire :

$$A_{i+1} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} A_i.$$

— Ou bien, on remplace la 2^{nde} ligne L_2 de A_i par $(L_2 + kL_1)$, avec $k \in \mathbb{Z}$. Ce qui revient à écrire :

$$A_{i+1} = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} A_i.$$

On voit que dans les deux cas, on a :

$$A_{i+1} = MA_i$$
 (avec $M \in \mathcal{M}_2(\mathbb{Z})$).

Il s'ensuit de cela qu'on a :

$$A_{i+1} \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = (MA_i) \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = M \begin{pmatrix} A_i \begin{pmatrix} a \\ b \\ -1 \end{pmatrix}$$

$$= M \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(d'après notre hypothèse de récurrence)}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

comme il fallait le prouver.

Ceci achève cette récurrence et confirme le résultat de la proposition.

Corollaire 2. Soient $a, b \in \mathbb{Z}^*$ et $c \in \mathbb{Z}$ tels que $\operatorname{pgcd}(a, b)/c$. On considère l'algorithme de Blankinship débutant par la matrice $\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}$ et s'achevant par une matrice $\begin{pmatrix} x_0 & y_0 & d \\ x_1 & y_1 & d' \end{pmatrix}$ tel que l'un au moins des deux entiers d et d' divise c.

Alors si d/c, le couple $(x_0 \frac{c}{d}, y_0 \frac{c}{d})$ est une solution particulière (dans \mathbb{Z}^2) de l'équation diophantienne ax + by = c et si d'/c, le couple $(x_1 \frac{c}{d'}, y_1 \frac{c}{d'})$ est une solution particulière (dans \mathbb{Z}^2) de la même équation.

Démonstration. D'après la proposition 1, on a :

$$\begin{pmatrix} x_0 & y_0 & d \\ x_1 & y_1 & d' \end{pmatrix} \begin{pmatrix} a \\ b \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Ce qui donne:

$$ax_0 + by_0 = d (1)$$

$$ax_1 + by_1 = d' (2)$$

Il suffit alors de multiplier les deux membre de (1) par $\frac{c}{d}$ (lorsque d/c) et les deux membres de (2) par $\frac{c}{d'}$ (lorsque d'/c) pour obtenir les solutions particulières énoncées par le corollaire pour l'équation diophantienne ax + by = c. La démonstration est achevée.

Remarque: Pour déterminer une solution particulière (dans \mathbb{Z}^2) d'une équation diophantienne ax + by = c (avec $a, b \in \mathbb{Z}^*$, $c \in \mathbb{Z}$ et pgcd(a, b)/c) en utilisant l'algorithme de Blankinship, il est plus commode (en pratique) de partir de la matrice

$$A_0 = \begin{pmatrix} 1 & 0 & |a| \\ 0 & 1 & |b| \end{pmatrix}.$$

L'application du résultat de la proposition 1 à la dernière matrice que l'on obtient fournit immédiatement une solution particulière de l'équation en question.

3 Exemples

Exemple 1. Déterminons, par la méthode de Blankinship, une solution particulière (dans \mathbb{Z}^2) à l'équation diophantienne :

$$38x - 141y = 1$$
.

Pour ce faire, on prend comme matrice de départ :

$$A_0 = \begin{pmatrix} 1 & 0 & 38 \\ 0 & 1 & 141 \end{pmatrix}.$$

La division euclidienne de 141 sur 38 donne 3 et reste 27. Ce qui suggère d'utiliser la transformation $L_2 \to L_2 - 3L_1$, qui transforme A_0 en :

$$A_1 = \begin{pmatrix} 1 & 0 & 38 \\ -3 & 1 & 27 \end{pmatrix}.$$

La division euclidienne de 38 sur 27 donne 1 et reste 11. Ce qui suggère d'utiliser la transformation $L_1 \to L_1 - L_2$, qui transforme A_1 en :

$$A_2 = \begin{pmatrix} 4 & -1 & 11 \\ -3 & 1 & 27 \end{pmatrix}.$$

La division euclidienne de 27 sur 11 donne 2 et reste 5. Ce qui suggère d'utiliser la transformation $L_2 \to L_2 - 2L_1$, qui transforme A_2 en :

$$A_3 = \begin{pmatrix} 4 & -1 & 11 \\ -11 & 3 & 5 \end{pmatrix}.$$

La division euclidienne de 11 sur 5 donne 2 et reste 1. Ce qui suggère d'utiliser la transformation $L_1 \to L_1 - 2L_2$, qui transforme A_3 en :

$$A_4 = \begin{pmatrix} 26 & -7 & 1 \\ -11 & 3 & 5 \end{pmatrix}.$$

Nous pouvons nous arrêter là puisque le premier coefficient de la $3^{\text{ème}}$ colonne de A_4 (égale à 1) divise le second membre de l'équation proposée (à savoir 1). D'après la proposition 1, on a :

$$A_4 \begin{pmatrix} 38\\141\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix},$$

c'est-à-dire:

$$\begin{pmatrix} 26 & -7 & 1 \\ -11 & 3 & 5 \end{pmatrix} \begin{pmatrix} 38 \\ 141 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Ce qui entraîne (en particulier) que :

$$26 \times 38 - 7 \times 141 - 1 = 0$$

et montre que le couple (26,7) est une solution particulière de l'équation proposée. \Box

Exemple 2. Déterminons, en utilisant la méthode de Blankinship, une solution particulière (dans \mathbb{Z}^2) pour l'équation diophantienne :

$$116 x + 37 y = 6.$$

On part de la matrice

$$A_0 = \begin{pmatrix} 1 & 0 & 116 \\ 0 & 1 & 37 \end{pmatrix}.$$

Par $L_1 \to L_1 - 3L_2$, on transforme A_0 en

$$A_1 = \begin{pmatrix} 1 & -3 & 5 \\ 0 & 1 & 37 \end{pmatrix}.$$

Ensuite, par $L_2 \to L_2 - 7L_1$, on transforme A_1 en

$$A_2 = \begin{pmatrix} 1 & -3 & 5 \\ -7 & 22 & 2 \end{pmatrix}.$$

Nous pouvons nous arrêter là puisque le second coefficient de la dernière colonne de A_2 (qui vaut 2) divise le second membre de l'équation proposée (à savoir 6). D'après la proposition 1, on a :

$$A_2 \begin{pmatrix} 116\\37\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix},$$

c'est-à-dire

$$\begin{pmatrix} 1 & -3 & 5 \\ -7 & 22 & 2 \end{pmatrix} \begin{pmatrix} 116 \\ 37 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Ceci entraîne en particulier :

$$-7(116) + 22(37) - 2 = 0,$$

i.e.,

$$116(-7) + 37(22) = 2.$$

En multipliant par 3, il vient que

$$116(-21) + 37(66) = 6.$$

Ce qui montre que le couple (-21,66) est une solution particulière de l'équation proposée. \Box

Références

[1] W.A. Blankinship. A new version of the Euclidean algorithm, *Amer. Math. Monthly*, **70** (1963), p. 742-745.